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1 Introduction

Over the past two decades a number of researchers (e.g. Bergstrom [1995],

Rogers [1994], Robson and Kaplan [2003], Chu and Lee [2006, 2008]) have

applied economic approaches to study various characteristics of species. A

recent survey of such literature can be found in Cox (2007). A topic men-

tioned but not seriously studied in the economics literature is sexual di-

morphism, a phenomenon that male and female adults possess signi�cantly

di¤erent biological traits, whereas the juveniles are much similar. In Cox

(2007), some brief discussion and a classic article by Trivers (1972) were

provided. A related area of discussion is sexual selection, where females

choose their male mates according to some observed traits. In this paper we

shall propose a uni�ed economic theory that can explain most features we

observe in sexual dimorphism and sexual selection.

1.1 Previous Literature

A brief introduction to the biological literature should be helpful to general

readers. According to Maynard Smith (1991), there are two broad types

of sexual interactions: intrasexual competition and intersexual selection.

The latter involves both male traits and feale preferences; and the former

does not consider the preference side of females, but emphasizes the male-

male competition. It is well known from the research of evolution that

sexual dimorphism is highly correlated with sexual competition, which refers

to the competition (and the resulting equilibrium) of mating partners by

organisms. In reality, this competition is usually between males.

For intrasexual competition, the classic article is a contribution by Trivers

(1972). He argued that relative parental investment is the key to understand

sexual competition. By parental investment, Trivers means �any investment

by the parent in an individual o¤spring that increases the o¤spring�s chance

of surviving (and hence reproductive success) at the cost of the parent�s

ability to invest in other o¤spring" (p.139). >From the italic we added
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and the discussion in his paper, we know that the resources Trivers refers

to are mostly parental transfer after the o¤spring is born. But from the

persepctive of life history, parental transfers are endogenous control vari-

ables chosen by organisms in their lifetime. We believe that sex dimorphism

can be explained by more fundamental exogenous elements of species.

Other than Trivers (1972), Emlen and Oring (1977) emphasized the im-

portance of operational sex ratio (OSR) on sexual selection, where the OSR

is de�ned as the ratio of fertilizable females to active males. In practice,

the OSR is evidently related to ecological, geographical, and spatial factors

that may in�uence the environment of male-female interactions. In Kokko

and Johnstone (2002), they considered the joint in�uence of parental in-

vestment, mortality, mate-encounter rate and OSR, and concluded that the

importance of parental investment outweighs that of OSR. In this paper, we

leave most environmental factors to the background, and concentrate on the

role of parental investment.

In the analysis of sexual interaction, the literature is sometimes troubled

by the correlation of dimorphic traits with other observations, and its inter-

pretation. For instance, Leutenegger and Choverud (1982) found a correla-

tion between sexual dimorphism and body size and provided some analysis;

however, Gaulin and Sailer (1984) suggested a very di¤erent interpretation

of the same correlation. Partly because of this di¢ culty of interpretation,

we set up a life history model to analyze the problem of sexual dimorphism.

In the framework of an optimal life history, species�traits such as body size

and tooth size are control variables chosen by species, and the interpreta-

tion of implications follows naturally from the model. Basically, the only

fundamentals in a life history model is the energy coe¢ cients of various

controls, and we shall interpret most observations by sex-speci�c di¤erences

based upon such fundamentals. For instance, we go beyond Trivers (1972)

and di¤erentiate after-birth parental transfers from fertility costs, which

were both treated as investments by Trivers. As we mentioned, we believe
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that sex-speci�c fertility costs are fundamentals to the evolution, whereas

parental transfers are something species choose in the process of evolution.

Distinguishing such is important to the understanding of evolutionay dy-

namics. For example, our theory suggests that viviparous species are likely

to have sexual dimorphism, for viviparous males and females have drastically

di¤erent reproduction costs.

For intersexual selection, Zahavi (1975) argued that males may have

some advantageous traits which are unobservable to females. In this case,

males may use a seemingly useless trait (a handicap), such as the plumage of

some birds, to signal his superior quality to females. However, Fisher (1958)

and Lande and Arnold (1985) all pointed out that the evolution of such trait-

preference may be selectively neutral. Using a simple 2-trait 2-allele model,

Kirkpatrick (1982) showed that even the initial selective advantages of evo-

lution are not necessary. This pretty much makes the evolutionay outcome

of intersexual selection indeterminate. Later, Iwasa et al. (1991) showed

that this neutrality result breaks down if there is a small cost of female

searching. They also demonstrated that the handicap hypothesis is valid

only if there exists a connection between male trait and viability parame-

ters. Using our model we are able to provide a neat economic interpretation

for this handicap hypothesis.

1.2 Contribution of this Paper

The existing literature explains various features of sexual dimorphism and

sexual selection using di¤erent models, including quantitative genetics (Iwasa

et al. [1991]), Malthusian competition (Hausken and Hirshleifer [2008]), and

descriptive analysis (Trivers [1972]). In this paper, we propose a uni�ed

framework of two-sex life history along the lines of Stearns (1972) that can

explain all related features comprehensively.

We suggest that the origin of sexual dimorphism and sexual selection

proposed by (Darwin 1871) is the di¤erence between male and female repro-
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duction costs: the cost of producing sperms is trivial for males and that of

producing eggs by females is signi�cantly larger, not to mention the cost of

pregnancy and delivery for many viviparous species. We study the optimal

energy allocation strategy of male and female genes along a life history. Due

to the cost di¤erence of reproduction, the resulting Bellman equations of

these genes imply a large �energy surplus" on the part of males. This leaves

the male gene the room of a mutation, which commands a shift of such sur-

plus energy to the growth of some male traits that help the males�sexual

competition. The condition of a successful invasion of such a mutation can

be derived.

Consider the scenario that many males compete to become an alpha

male, who has the dominant privilege to mate. Since there is only a small

chance to be an alpha male, ex ante each male child can be seen as a risky

lottery: [having a small probability to mate many females and a large prob-

abilty to mate none]. For female children, they almost surely can mate

with the alpha male, and hence the correspondig lottery is a degenerated

one. >From the parents�point of view, treating their children as assets of

proliferating their genes, the parents actually have a (sex-speci�c) portfolio

of children, some (males) are high-risk high-return, and some (females) are

low-risk and low-return. We shall explain why this is an optimal design

arising from a life history model.

The male competition leads to the growth of some male traits, end

eventually to the phenomenon of sexual dimorphism. Using this two-sex

life history model we are also able to explain, for instance, why for most

species males provide less intergenerational transfers than females, and why

menopause only happens to females. Thus, we elaborate the discussion of

Trivers (1972), and extend it to many other sex-speci�c di¤erences that have

not been analyzed in the literature.
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1.3 Paper Structure

The rest of this paper is arraned as follows. Section 2 introduces some pre-

liminaries and notations for later analysis. Sections 3-4 present the model

of life history and energy constraints, and derive the Bellman equation for

maximizing �tness. We discuss intrasexual competition, and relate various

phenomena of sexual dimorphism to the di¤erence of distinct sex-speci�c

reproduction costs. Section 5 explains the optimality of male-female �child

fortfolio". The sixth and seventh sections are about di¤erences in male-

female transfers and menopause. Section 8 covers the discussion of intersex-

ual selection. The �nal section summarizes and concludes.

2 Event Order and Preliminaries

Suppose individuals live two ages, 0 and 1. There are two sexes. LetMa;t be

the value of a male gene at age-a and time-t, and Fa;t be the value of a female

gene at age-a and time-t. Let m (f) be the reproductive e¤ort by males

(females), and pa;m (pa;f ) be the survival probability for males (females)

aged-a. In practical context, m refers to the male e¤ort of producing sperms

and successful insemination, and f refers to the female e¤ort of successful

pregnancy and delivering. In each age, energy is assumed to be allocated

into four uses: maintenance, reproduction, somatic growth and parental

downward transfers.

We shall consider a determinate growth path; that is, the species in ques-

tion grows but does not give birth in age 0, and then are capable of giving

birth but stops growing in age 1.3 There is not much complication about the

decision by the growing juvenile: the age-0 just allocate their energy between

maintenance and growth; but the event order of age-1 needs to be speci�ed.

3 It is well known from the literature that a determinate growth will appear in a model

of optimal life history if a linear energy constraint is assumed. See e.g. Chu and Lee

(2006) for details.
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We assume that at the beginning of age-1, each adult �rst hunts or for-

ages, and gets some energy for this age. Then, each adult faces a �lottery",

which speci�es a probability distribution of reproduction privileges (to be

explained below). We allow natural selection to determine the lottery that

has the best �tness in evolution. For instance, for males, monogamy and

polygamy are two di¤erent marriage-fertility lotteries. When the random

outcome of the lottery is realized, each adult allocates the available energy

to maintenance, transfers and reproduction. The nature then determines

whether the adult would survive, and only survived ones can reproduce.

The above event order is to some extent arbitrary, but is something we

must specify in this discrete-time model. However, none of our results will

be a¤ected qualitatively if this order is changed.

In this 2-sex model, individuals of opposite sexes have to put together

their reproductive e¤ort in order to give birth an o¤spring successfully. How-

ever, one sex has to be the one that bears the child, and we use to call it

�female". There are two unique features associated with the female sex.

First, as Trivers (1972 p. 138) pointed out, for almost all two-sex specieis

(and especially evident for viviparous ones), the metabolic energy of repro-

duction is particularly large for females, but is very small for males. Second,

the male�s reproduction e¤ort may spread among many females, whereas the

female�s e¤ort determines her �nal births. The �rst property speci�es a dif-

ference in energy coe¢ cient associated with reproduction, and technically, as

we shall see shortly, the second property suggests an aggregation constraint

on male/female numbers.

An innovation of our model is to specify marriage-reproduction as a

lottery; this turns out to be a convenient setup for analyzing sexual selection.

Let fm1;m2; � � � ;mi; � � � ; g be a vector of possible reproductive numbers for
a male, and ff1; f2; � � � ; fj ; � � � g be the vector for a female. We assume

that each individual adult faces a lottery: for i = 1; 2; � � � , males have qi
probability of realizing mi; and for j = 1; 2; � � � , females have rj probability
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of realizing fj . From now on, unless otherwise speci�ed, i is the index used

for males and j is the index used for females.

We can think of lions as an example. Male lions have to �ght for the

privilege to mate females. We imagine that the result of this �ght is speci�ed

as a lottery. For instance, a male has qi probability of winning the privilege

of impregnatingmi times in his adult age. We want to show that the evolved

lottery for males is: [winning a largemk with very small qk, and winning zero

females with 1�qk probability]. This is the typical case of male competition.
On the other hand, we also want to show that evolution usually does not

result in female lionesses �ghting for their right of reproduction; for sure each

female can mate a male lion king, whoever he is. This is indeed the case

for many species.4 However, ex ante we intentionally specify f as a lottery

instead of a singleton, and we will prove that it is a �tness maximization

design for the female�s degenerated lottery; that is, reproducing fk for sure

(rk = 1) for a particular k.

Of course, we know that a male lion�s privilege to mate is not a pure

lottery; it may be related to their strength and body size, and may also

drive the evolution of male/female somatic capital investment. At the �rst

stage, we leave aside the male�s decision of somatic investment, and then

in later sections we shall come back and discuss some related issues. For

instance, does the emancipated male usually provide less downward transfers

than females? And how does our model accomodate with the ecological and

territorial arguments of Brown (1964)?

3 The Two-sex Bellman Equations

We shall �rst write down the Bellman�s principle of optimality for genes that

maximizes their �tness, and then explain its meaining. Following Chu and

4Many examples can be found in Trivers (1972).
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Lee (2006), we see that the Bellman equations for sel�sh genes look like

F0;t = max
n
p0;fF1;t�1

o
(B)

M0;t = max
n
p0;mM1;t�1

o
F1;t�1 = max

n
p1;f

X
j

fjrj

�M0;t�1
4

+
F0;t�1
4

�o
M1;t�1 = max

n
p1;m

X
i

miqi

�M0;t�1
4

+
F0;t�1
4

�o
In the above expression, the �tness maximization is over age-speci�c con-

trols including (pa;m; pa;f ; qi; rj); a = 0; 1 and some others to be described

shortly. We assume that mi and fj are speci�ed over a wide enough range,

and hence the choice of qi and rj are enough to characterize the speci�ca-

tion of the reproduction-privilege lottery. Because the aggregate number

of impreganancy made by males must be equal to the aggregate number of

pregnancy, there is a constraint relation between rj and qi, which we shall

explain soon.

3.1 Interpreting the Bellman Equations

The interpretation of the Bellman equations is as follows. For the age-0,

they only grow but do not give birth, therefore their gene value hinges upon

the event of successfully surviving to age 1 one period later. This explains

the �rst two equations. For female genes at age 1, the speci�cation of the

F1;t equation is straightforward. If a female lioness has fj pregnancy, we

assume, as in Trivers (1972 p.140) that the probability of having a newborn

of either sex is 1/2.5 The values of male and female genes aged-0 in the next

generation are denoted respectively M0;t�1 and F0;t�1. Becuase each birth

only carries 1/2 of the original gene, we divide the M0;t�1 and F0;t�1 by 4

(1/2 of either sex, and 1/2 of gene from either the male or the female line) on

5Our purpose is to �nd the optimal life history (qi; rj ; pa;s) and to discuss sexual di-

morphism; we do not see the value of a digression to disproportionate birth sexes here.
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the right hand side of the third equation. The event of facing fj pregnancy

has probability rj , therefore we take expectation over such events. This

explains the F1;t�1 equation.

If a lioness faces an fj outcome, as far as her gene succession is concerned,

she will de�nitely reproduce fj succession of her gene, regardless with whom

she mates. But for a male gene, if he face a lottery (mi; qi), we know that

this lottery will be feasible only if it is consistent with the capacity of female

pregnancy. Speci�cally, the total number of e¤ective impregnancy, which isP
imiqi times the number of age-1 males, must be equal to the total number

of pregnancy, which is
P
j fjrj times the number of age-1 females. This

aggregation constraint must be taken into account as we solve the Bellman

equation listed above. Indeed, this is a fundamental di¤erence between male

and female reproduction. This character origins from the sole fact that the

females is the sex that is pregnant and bears the child.

Replacing the controls by their optimum, we can iterate the Bellman

equations to obtain the dynamic equations for (M0;t; F0;t), as in Chu and

Lee (2006). The dimension of state variables can be further reduced, once

we observe that we can de�ne xt = (M0;t + F0;t)=2; and re-write everythig

in xt. It can be easily seen that the Bellman equations (B) now can be

expressed compactly as

xt =
1

4

h
p0;mp1;m(

X
i

miqi) + p0;fp1;f (
X
j

fjrj)
i
xt�1 (1)

>From demography theory it is well known that as long as the controls

(qi; rj ; pa;s) are time invariant, the dynamics of (1) will guarantee the con-

vergence of xt to a path of exponential growth rate, called the Euler-Lotka

parameter. Suppose � is the steady state growth rate of xt. Then the above

discussion suggests a simple characterization of the Euler-Lotka pa-

rameter � for the two-sex model:

� = max
1

4

h
p0;mp1;m(

X
i

miqi) + p0;fp1;f (
X
j

fjrj)
i

(2)
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On the right hand side of (2), terms in the square parentheses are the ex-

pected lifetime reproduction of genes, just like the lifetime birth criterion

adopted in many of the one-sex (female) models (see e.g. Sozou and Seymour

[2003]).

3.2 Energy Constraints and Assumptions

In this simpli�ed over-lapping generation structure, let us look at the energy

constraint of the mature age. Let the unit cost of m and f be respectively

cm and cf . Similarly, the unit cost of p1;s is assumed to be b1;s. Then, if a

male and a female realize event i and j from their respective lotteries, we

have the following energy constraints:

b1;mp1;m + cmmi + Tm � g(zm)

b1;fp1;f + cffj + Tf � g(zf );

where Ts is the parental transfer to children provided by sex s, and zf (zm)

is the total capital stock contributed by parents for females (males). If a

child of sex s receives a tranafer intensity zs, then we assume that the energy

this child can generate as an adult is g(zs). In Trivers (1972), cffj and Tf

are combined to be named the female investment, and similarly for males.

Here we separate them and shall provide respective interpretations later.

For the time being, we skip the energy constraint of age-0; the juvenile�s

growing strategy will be more interesting as we introduce the sex-speci�c

choice and evolution of zs. For now we simply assume that Ts is a constant

proportion of g(zs), and ignore it. We shall concentrate on the following

question: how would the reproduction lottery evolve? Would evolution lead

to a sexual competition scenario such that the male always faces a lottery

�having a small probability of becoming a lion king and mate many, and a

large probability of mating zero female lioness"? And would the female face

a lottery of �having 100% probability of reproducing f� o¤spring" (a degen-

erated lottery)? Note that equation (2) suggests that sexual dimorphism
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should be explained jointly: Despite that male and female genes dictate dif-

ferent ex post life history development pattern, ex ante they both carry 1/2

gene of their parent. Knowing that his or her o¤srping will have 1/2 chance

of becoming males or females, would a sel�sh parent gene prefer dimorphic

lotteries for males and females?6 If we can prove that the optimal lottery

design for rj and qi are intrinsically dimorphic, then we can match our the-

oretical prediction with the practices we usually observe on species such as

lions, baboons, etc.

4 Sex-dimorphic Mating Lotteries

We believe that the fundamentally intrinsic di¤erence between males and

females is the cost of giving birth. This is particularly evident for viviparous

species. We shall relate most features associated with sex dimorphism to

this intrinsic distinction.

Given that cf is much laregr than cm for most species, intuitively the

optimal life history would imply a relatively small optimal f�. If there is

intrasexual competition, then it is perceived that having a female child is

owning a low-return (small fertility f�) and low risk (almost surely can be

pregnant f� times) asset, whereas having a male child is owning a high-

risk (di¢ cult to become a lion king) and high return (once being a king,

can impregnate many times and spread the gene). Thus, the parent gene

actually ownes a sex-speci�c portfolio from the children: the male gene is

high-risk high-return, and the female gene is low-risk low-return. We wonder

how evolution leads to this result.

Suupose Ts = 0 for the time being, as we said in the previous discussion,

and we shall consider the scenario for any given zs and juvenile survival

probability p0;s (s = m; f). As one can see, our conclusions still hold even

if we consider zs and p0;s as endogenous. When contingency i is realized

6Biologically, we assume that genes that control traits are autosomal, and those control

reproductive lotteries are haploid.
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for a male, p1;m can be writen as p1;m = (g(zm)� cmmi)=bm: Similarly, p1;f

can be written as p1;f = (g(zf )� cffj)=bf for a female facing contingency j.
Substituting these into (2), we can rewrite the maximizing-�tness problem

as solving

p0;m
2

�
max
q

X
i

[mi(g(zm)� cmmi)=bm]qi

�
(3)

+
p0;f
2

�
max
r

X
j

[fj(g(zf )� cffj)=bf ]rj
�
:

There is actually one more constraint for the male�s maximization, which

we shall soon add.

We �rst look at the female problem, because the male�s choice does not

a¤ect its solution (with whomever she mates, her gene is passed on in each

of her pregnancy). For the quardratic formula fj(g(zf ) � cffj), there is

an fj� that maximizes it. The optimal lottery for juveniles is certainly to

make rj� = 1 and rj = 0 for j 6= j�. Thus, each lioness should face a

certain event of bearing f� � fj� children; they should not face any

uncertainty about their privilege to bear. Considering the simpli�ed

approximation that f is a continuous variable, then the optimal f from the

quardratic objective function can be written as

f� = g(zf )=(2cf ):

4.1 A Male-Female Interacting Constraint

Now we look at the male�s choice. If the male portfolio dictates that

each male has qi probability of impregnating mi times, then the constraint

N1;m(
P
imiqi) = N1;f (

P
j fjrj) must hold, because the total numbers of

pregnancy and impregnancy must be equal. Suppose on the optimal life

history path, the male and female age-0 survival probabilities are about the

same, so that given our assumption of equal proportion of male/female new-

borns, the age-1 male and female numbers, denoted respectively N1;m and
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N1;f , are about equal. Note that our result is independent of this assump-

tion, and here we only simplify the presentation. Given that N1;m � N1;f ,

we see that the design of male lottery must have an additional con-

straint:7X
i

miqi =
X
j

fjrj : (4)

For the time being we ignore the constraint in (4), and see what the

male�s �ideal" solution is. If males are not constrained by (4), their optimal

choice of m (when it can be chosen continuously) could be solved from the

maximization problem in the �rst pair of square parentheses of (3). It is

easy to see that under a continuous approximation,

m� = g(zm)=(2cm):

Thus, without the constraint in (4), the male should also choose a degener-

ated lottery that assigns probability 1 to the point m = m�, and probability

zero to everywhere else. Suppose the adult male/female available energy

does not di¤er much, so that the di¤erence between g(zm) and g(zf ) is not

signi�cant. Then, comparing m� = g(zm)=(2cm) with f� = g(zf )=(2cf ), we

see that m� would be signi�cantly larger than f�, because cm is signi�cantly

smaller than cf .

Now we take into account the imposed constraint (4). When females

choose f = f� for sure and males�choice of lotteries is constrained by (4),

the ideal choice m� is out of the question. From (4) the male has to choose

qi such that
P
imiqi = f�. Because the objective function of males (u(m) �

m[g(zm) � cmm]) is concave in m, any spread lottery will be dominated

by the one degenerated at its mean. Evidently the optimal strategy for

males (maximizing
P
i u(mi)qi subject to

P
imiqi = f�) is also to choose a

degenerated lottery: assign probability 1 to m = f�, and probability zero to

7 If the probabilities of surviving age-0 are di¤erent for di¤erent sexes so that N1;m 6=
N1;f , then we should simply pre-multiply the right hand side of (4) by p0;f=p0;m:
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everywhere else. The fact that f� and m� di¤er a lot indicates that males

are very unhappy about this constraint (because f� << m�).8 In view of

Figure 1, we see that by choosing m = f�, males are very ine¢ cient

in using their energy, producing a u(f�) much lower than that of

u(m�).

insert Figure 1 about here.

4.2 The Male�s Motivation for Competition

Feeling that his energy is used rather ine¢ ciently, a male gene has much

room for mutation options. Speci�cally, the male gene may shift some of his

energy to somatic investment I which may improve the spread of his gene.

The somatic investment may be enlarging canine teeth, improving muscle

strength, or growing bigger antlers, etc. These investments increase the

probability of his successful impregnancy either by being more attractive to

females, or by �ghting and driving away other competitors. Without such

investments, the vector q for males is a purely exogenous random draw by

Nature, while with such investments, the random draw will be a¤ected by

all competitors�e¤orts.

For demonstration purposes, we assume that females always live in a pack

of size n, and that the lottery is speci�ed as: having probability q of mating

all n females of this pride, and probability 1 � q of mating none of them.

In the latter case, we can think of it as a scenario that the male in question

loses the competition and is driven away. Formally, for a male indexed

k, let the probability of winning these n females be written as q(Ik; I�k),

where Ik is k�s investment and I�k is the vector of investment of all other

competitors. We shall consider a mutation of the male-k gene that increases

Ik, and see if this will help k win over other genes. Recall from (3) that

the male part�s �tness index can be written as
P
i qimi(g(zm)� cmmi)=bm:

8This is what Gaulin and Sailer (1984) called �sex di¤erences in reproduction poten-

tials."
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Given our speci�cation, that there is q(Ik; I�k) probability of impregnating

m = nf� times and 1 � q probability of having m = 0, the male�s �tness

index can be expressed as

[g(zm)� Ik � cmnf�]
b1;m

� q(Ik; I�k)nf� + [1� q(Ik; I�k)] � 0 (5)

First, we check whether a mutation of male investment could invade the

original gene group without sexual competition. To simplify our discus-

sion we shall consider the symmetric case. Suppose the original investment

for all relevant males is the same, and is equal to Ik0 , which may well be

zero. In such a symmetric equilibrium, each male is equally e¢ cient in mate

competition. Equation (4) in this case can be written as

q(Ik0 ; I
k
0 ) � nf� + [1� q(Ik0 ; Ik0 )] � 0 = f�:

Also, since there are equal number of adult males and females by assumption,

we know that q(Ik; Ik) = 1=n must hold at any symmetric equilibrium. If

male k now has a mutation and increases a little bit of his investment alone,

while all other males have the same investment, the change of q can be

written as9

@q(Ik; I�k)

@Ik

���
Ik=I�k=Ik0

� �(Ik0 ) > 0:

We assume �(Ik) > 0 because more investment by k usually implies higher

likelihood of winning the competition. We also assume that �0k) < 0, mean-

ing that the marginal return to investment decreases as Ik alone accumu-

lates.

Noting that q(Ik; Ik) = 1=n, we see by di¤erentiating (5) that whether

the mutation will invade successfully depends on the sign of the following

expression:


 � f�n

b1;m

h�1
n
+ [g(zm)� cm(nf�)� Ik]�(Ik)

i
� f�n

b1;m

h�1
n
+	(Ik)

i
(6)

9There is a bit of notation abuse here: I�k is a vector and Ik is a scalar. As we write

I�k = Ik = Ik0 , we actually mean that every element of I
�k is equal to Ik0 .
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where

	(Ik) � [g(zm)� cm(nf�)� Ik]�(Ik):

As one can see from Figure 2, if 	(0) > 1=n, meaning that the

intercept of the 	 curve is higher than 1=n, then a mutation that

commands a small investment Ik > 0 will invade the original gene

group with Ik = 0 successfully.10 Since the o¤spring of this mutant has

a larger �tness index, or a larger gene spread by (2), they will dominate and

eventually drive away the original male genes. The new equilibrium will

consist of all males with this positive Ik.

insert Figure 2 about here.

4.3 Relating Sexual Dimorphism to Reproduction Costs

Then we evaluate (6) at I = Ik + � and see if a mutation that commands

more investment will change the equilibrium once again. The conceptual

experiment can be exercised on and on. Eventually, as one can see, the

equilibrium I will be the intersection point A in Figure 2. Note that f� =

g(zf )=(2cf ), hence cm(nf�) = ng(zf )[cm=2cf ]. Thus,

	(Ik) �
h
g(zm)�

ng(zf )cm
2cf

� Ik
i
�(Ik):

Therefore, when cm=cf is smaller, 	 is higher, implying a larger equilibrium

I� by Figure 2. Thus, we directly relate the degree of male com-

petition (I�) in sexual selection to the di¤erence in male/female

reproduction costs. This is intuitively appealing, for male species with

smaller cm=cf can produce a relatively large m costlessly, and hence they

10 Intuitively, the tradeo¤ of increasing I is as follows: The reduction of p due to the

increase of a unit of I is 1=b; this term should be weighted by the original probability

q = 1=n. The increase of a unit of I enhances the probability q by �; this term should be

weighted by the original p = (g � cmnf � I)=b. Combining these two terms, we obtain
equation (6).
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feel particularly depressed by the constraint
P
imiqi = f�. Their excess

energy, therefore, is likely to be directed to investment on I�.

Next, let us check how an interior-solution Ik is a¤ected by the female

pride size n. It is easy to see that

@


@n
=

f�

b1;m
[g(zm)� 2cm(nf�)� Ik]�(Ik):

In the above expression, terms in the square brackets are the �rst order

condition of unconstrained male mating, when the male is choosing x to

maximize p1;m � x = (g(zm) � cmx � Ik) � x=b1;m. As long as the female
pride size n is not extremely large, when we substitute x in this �rst order

condition by nf�, [g(zm) � 2cmnf� � Ik] should be positive, and hence so

is @
=@n. Suppose the second order condition of an interior maximum

holds. Then @
=@n > 0 implies that the optimal Ik increases with n. Thus,

with some abuse of language, we see that there is a positive correlation

between polygyny and the investment on traits which males use

for competition, whatever that trait is. Such male investment often causes

a distinction of phenotypes between males and females. This is another way

to describe what is found in the literature of Leutenegger and Cheverud

(1982) and Gaulin and Sailer (1984) concerning the correlation between

sexual competition and sexual dimorphism.

In the above analysis, we put most of our emphasis on the di¤erence in

reproduction costs. But what about the ecological and territorial costs em-

phasized by Brown (1964) and Emlen and Oring (1977)? In our setup, these

environmental factors are implicitly embodied in the q(Ik; I�k)

function. For instance, in an environment where potential mates are not de-

fendable, it is di¢ cult for a strong male to maintain his control over females.

In our model, this implies that � is small, and hence a mutation of investing

more Ik does not pay o¤ well. Thus, sexual dimorphism along this direction

cannot arise. For life history speci�cation of genes, environmental factors

are exogenous, but our model is consistent with the resource-environment

argument of Brown, and Emlen and Oring.
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Our theory is also consistent with models of intersexual selection with

female preferences. Conceptually, the q function in (5) may be de-

termined by female preferences, and hence only investments that

appeal to females can possibly have a rewarding �. As shown in the

article of Kirkpatrick (1982), in a model with both male traits and female

preferences, there are many possible equilibrium paths of sex selection, and

this makes the analysis of sexual dimorphism even more di¢ cult. We shall

come back to this discussion later in section 8.

5 Is the Sex-speci�c Portfolio E¢ cient?

When a competition equilibrium A in Figure 2 is reached, each male devotes

I�; but since all individuals in the new symmetric equilibrium have the

same I�, the resulting probability of winning the mating privilege must still

be 1=n. Thus, what we observe is that the female chooses a degenerated

lottery of f = f�, whereas the male chooses a risky lottetry: [m = nf� with

probability 1=n and m = 0 with probability 1 � (1=n)]. Because realizing
a small f� is certain, the female strategy is low-risk and low-return. The

male strategy on the other hand is high-risk and high-return, for nf� is large

and its realizing probability (1=n) is small. Treating the male and female

children as assets, we observe that a parent has a portfolio of some lotteries

with high-risk high-return and some lotteries with low-risk low-return.

In Figure 3 we draw the utility (�tness index) for males. We see that,

because the symmetric equilibrium q(Ik; I�k) is always 1=n, the �nal �tness

index under competition (point B) is always lower than that of point C,

which is the equilibrium if all males stick to the certain event of impregnating

f� times for sure. This is the case because the male�s objective function

u(m) = m(g(zm) � cmm) is concave in m, and also because the somatic

investment I is assumed to appear after the energy generation. If the somatic

investment also increases zm and hence helps the energy generation [g(zm)]

of males, then it is possible that male competition may come up with a
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larger �tness index. We will come back to the discussion of endogenous zs

in the next section.

Now let us assume that zs; s = m; f is not changed as a result of chang-

ing I, and look at the possible ine¢ ciency out of sexual selection. Maynard

Smith (1958) remarked that �sexual selection will have evolutionary con-

sequences only if those individuals which have characteristics which make

them successful, in the competition for a mate, are also �tter than the av-

erage as parents". However, this remark has been revised by himself after

the publication of the intersexual selection papers in the 1980s. In models

of intersexual selection, if the mating preference of females is strong enough,

evolution can even maintain a male trait that causes greatly reduced viabil-

ity. Thus, male trait in a intersexual scenario may well be nonadaptive. In

the following we show that this is also true even in our intrasexual compe-

tition model.

As one can see, when (6) is positive, the mutation of more trait in-

vestment will invade. However, all competition will end up with the same

success probability 1=n. Thus, as far as the �nal outcome is concerned, the

new equilibrium is at point B of Figure 3, whereas the old one is at point

C, which always has larger �tness index than B. Therefore, in a symmet-

ric evolutionary equilibrium the male competition is like a prisoners�

dilemma game, in which a unilateral mutation of increasing I may

be a dominant strategy, even though the degenerated monogamy

strategy with m = f� actually provides more lifetime birth in the

evolutionary equilibrium. This is an ine¢ ciency from intrasexual com-

petition.

In Zahari (1975 p.211), the author pointed out the potential waste of

peacock�s tail in the context of intersexual selection. He suggested that this

waste may be a necessary signal to inform the female of the male�s qual-

ity. This is certainly a comparison of qeuilibria with and without beautiful

tail plume. Along the same logic, if we compare the equilibrium with and
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without competition investment I, we suspect that the waste from intra-

sexual male competition is in fact quite general. We do observe the useless

tail plume of peacocks, but we never had the chance to observe the perfor-

mance of a monogamous lion gene, which has already been driven away by

evolution.

6 Why Do Males Transfer Less than Females?

Now we take into account the role of parental transfers, a variable we dis-

tinguish from the cost of fertility in section 1. This discussion is also related

to the endogeneity of adult zs; s = m; f , which were assumed as exoge-

nous in previous analysis. In Trivers (1972), these two are treated jointly.

When male (female) adults provide Tm (Tf ) transfers to their children,

from the energy budget constraint we see that the age-1 survival proba-

bility should be revised as p1;m = [g(zm) � cmmi � Tm]=bm for males and

p1;f = [g(zf ) � cffj � Tf ]=bf for females. From the previous discussion,

we know that the female lottery still should be a degenerated one with

f� = [g(zf )� Tf ]=(2cf ).
Parental transfers are taken as energy endowment by the juveniles aged-

0. In general, such energy is used by the young for maintenance and somatic

growth. To simplify the analysis, we assume that juvenile survival proba-

bility p0;s is mostly determined by parents�guarding and watching. Under

this assumption, parental transfers are used all for in somatic growth zs.

6.1 Transfers in Monogamy and Polygyny

We start our discussion with the monogamy case, where the male also

chooses a certain m = f�. The �tness function becomes

� =
p0;m
2
f�[g(zm)� cmf��Tm]=bm+

p0;f
2
f�[g(zf )� cff��Tf ]=bf : (7)
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Suppose for simplicity that male and female juveniles share parental transfer

equally.11 Then, given that there are p0;s age-1 adults for sex s, the average

energy shared by each of the f� newborns would be

zm = zf = zmono =
p0;mTm + p0;fTf

f�
; (8)

where the subscript �mono" indicates that this is the monogamy case. We

can di¤erentiate � in (7) with respect to Tm and yield:

@�

@Tm
=
�p0;mf�
2bm

+
g0(zmono)f�

2

hp0;m
bm

+
p0;f
bf

idzmono
dTm

: (9)

When Tm is chosen optimally, (9) should be set to zero.

In the case of polygyny with male competition, we know from the previ-

ous discussion that the female still chooses f� for sure, and leaving aside the

consideration of cuckuldry and mating nomads, the male faces a randomized

portfolio: either mating n females or mating none. The �tness index for a

male indexed k then becomes

� =
p0;m
2

n
(nf�) �p1;m

o
q(Ikm; I

�k
m )+

p0;f
2

n
f�[g(zf )� cff��Tf ]

1

bf

o
(10)

Since there are n females and one male in the pride, the corresponding

formula for per-child transfer is

zm = zf = zpoly =
p0;mTm + np0;fTf

nf�
; (11)

where the subscript �poly" indicates that this is the polygyny case. Using

the relation p1;m = [g(zm)�cm(nf�)�Ikm�Tm]=bm, we can di¤erentiate � in
(10) and evaluate the result at a symmetric equilibrium with q(Ik; Ik) = 1=n.

The result is:12

@�

@Tm
=
�p0;mf�
2bm

+
g0(zpoly)f

�

2

hp0;m
bm

+
p0;f
bf

idzpoly
dTm

: (12)

11This will be the scenario in the lion case, for instance, when the hunted food is left

and shared by juvenile lions of both sexes freely, so that no juvenile of a particular sex

has a systematic advantage of taking more food.
12Note that f� is treated as given by the male gene, and hence it is not replaced by

f� = [g(zf ) � Tf ]=2cf in the derivation. This means that the gene controlling f� by
females is haploid.
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Again, when Tm is chosen optimally, (12) should be set to zero.

As one can see, ceteris peribus, the only di¤erence between (9) and (12)

is in the last term. Evidently, by (8) and (11),

dzmono
dTm

=
p0;m
f�

>
p0;m
nf�

=
dzpoly
dTm

;

since n > 1. Thus, plugging the original optimal male transfer derived in

the monogamy case, denoted Tmonom , into formula (12), the result will be

negative. This means that, other things being equal, when the male gene

changes his mating lottery from a certain one to a randomized competitive

one, he should also decrease his energy transfers to the young. If the optimal

T derived from (12) (the polygyny scenario) is T polym , then we should have

T polym < Tmonom :

Put di¤erently, if a mutation that shifts the male energy from

maintenance to growing canine tooth for competition in the polyg-

yny scenario, then a co-evolution of decreasing male transfers to

the young would also be selected. The intuition for this co-evolution to

be selected lies in the change of formula of z. When the formula of transfer

changes from (8) to (11), the marginal contribution of male transfers are

diluted. Originally in the case of monogamy, the male plays 1/2 of the role

as a supporting parent. After a male takes over a big females pride, he then

does not feel so important to contribute his energy as in the monogamy case,

since there are n females doing the job. This dilution e¤ect facilitates the

appearance of sel�sh males.

In view of Figure 2, we can see another interesting phenomenon. First

let us put in Tm and rewrite �1=n+	 in (6) as

�1
n
+ [g(zm)� cm(nf�)� Ik � Tm]�(Ik) �

�1
n
+	(Ik); (6�)

We know from the formula of 	 in (6) that when Tm decreases, the 	

function increases. Figure 2 tells us that the resulting equilibrium Im in-

creases with the decrease in Tm. Thus, the energy saved from reducing
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transfer by the male is indeed shifted to the increase of somatic

investment to improve the winning probability q.

6.2 Transfers and the Risk of Cuckoldry

Now consider the case when the pride consists of other males. This will

be the case when male competition can only generate an alpha male but

he cannot drive away other males. Well-known examples include baboons,

wolves, and sea lions. Then, the alpha male only has the priority privilege to

mate, although he is never sure whether the pregnant female really carries

his gene. In other words, we have paternal uncertainty, or the possibility of

cuckoldry for the alpha male. Facing such a cuckoldry risk, how would the

alpha male change his transfers?

Suppose each female still has a certain births, except that on average

f� of them are with the alpha male and f 0 of them are with other males.

The female does not care because in either case the baby carries her gene.

Since females try to maximize f [g(zf ) � cff � Tf ], her optimal fertility is

f� + f 0 = [g(zf )� Tf ]=(2cf ). However, because only f� births are from the

alpha male, he still multiplies nf� [instead of n(f� + f 0)] in front of p1;m in

(10). If the male loses the competition, there may be some small chance that

he can mate other females as well. But we shall ignore this in our discussion

of transfers, because the loser has even less incentive to make any transfer

to the children, who are unlikely to be the outcome of his incidental sex.

In the transfer equation, the formula changes to

zm = zf =
p0;mTm + np0;fTf

n(f� + f 0)
:

Using the above information, we see that the �rst order condition of Tm for

the alpha male becomes

Evidently, the larger is f 0, the smaller is the �rst term on the left hand side

of (12�), and the smaller is the optimal male transfer Tm. Thus, paternal
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uncertainty, or the risk of cuckoldry reduces male transfers. This

is consistent with the observation given by Trivers (1972 p. 146).

Again, the intuition behind this result is clear: Cuckoldry dilutes the

probability that a particular child is the descendant of the alpha male, there-

fore reduces his incentive to transfer.

7 The Sex Asymmetry of Menopause

Very few species in the world have menopause. According to Carey and

Gruenfelder (1997), only human beings, killer whales, and dolphins have

adaptive menopause. In terms of life history, an adaptive menopause means

that the species have an optimal life history path that corresponds to a

corner solution of fertility in the female�s old age. In the traditional evo-

lutionary framework of maximizing gene proliferation, a species should not

survive and waste resources if it cannot give birth. However, for species that

have the practice of intergenerational transfers, even post-reproductive old

age can still make contribution to gene proliferation as long as they provide

net transfers to the young. Most researchers, for instance Hawkes et al.

(1997), Carey and Gruenfelder (1997), and Chu and Lee (2008b), explain

menopause as a special kind of division of labor between a grandmother and

mothers, where the grandmother specializes in housework, food gathering,

and baby caring, while the mothers do all these plus bearing children. How-

ever, all these papers implicitly consider a model of females, therefore leave

aside the logical question why males never have menopause. In this section

we shall provide an answer to this question.

To consider menopause in our framework, we must extend our model to

two mature ages, so that a zero fertility choice in the old age is meaningful.

However, with two mature ages, we have the possibility of a female aged 1 or

2 mating with a male aged 2 or 1, and also the possibility of marriages lasting

1 period or two periods. To avoid all these unnecessary complications, we

make the following assumptions. We consider a polygamous species where
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the females living together have a size of n1 age-1 adults and n2 age-2 adults.

Only males of age-1 can compete for the alpha place, and the probability

of his winning is q1. If a male wins, he will impregnate all females in his

pride. He will be the alpha male for two consecutive periods if he survives

well. When he dies, either at his age 1 or age 2, a new pride king arises out

of a new round of competition. None of these assumptions are crucial to

our results, but they signi�cantly simplify our notations and presentation.

As in our 2-age model of the previous sections, adult females also determine

their optimal fertility independent of the male decision. We denote f1 and

f2 these optimal decisions in females�age-1 and age-2 respectively.

Given the above assumptions, we can write down the following expanded

Bellman equation for our 3-age setup; the interpretation is the same as in

section 3, and is therefore omitted.

F0;t = max
n
p0;fF1;t�1

o
M0;t = max

n
p0;mM1;t�1

o
F1;t = max

n
p1;ff1

�M0;t

4
+
F0;t
4

�o
+ p1;fF2;t�1

M1;t = max
n
p1;mq1(n1f1 + n2f2)

�M0;t

4
+
F0;t
4

�o
+ p1;mM2;t�1

F2;t = max
n
p2;ff2

�M0;t

4
+
F0;t
4

�o
M2;t = max

n
p2;mq1(n1f1 + n2f2)

�M0;t

4
+
F0;t
4

�o
Let the age of the alpha male be �. The energy budget constraint for this

cooperative breeding pride is

n1g1(zf ) + n2g2(zf ) + p�;mg(zm) �

n1(b1;fp1;f + cff1 + T1;f ) + n2(b2;fp2;f + cff2 + T2;f )

+ [b�;mp�;m + cm(n1f1 + n2f2) + T�;m + I�;m]: (13)

In the above expression, the left hand side adds up the energy output

by all members in the pride. The �rst and second terms on the right hand
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side are the female�s energy expense in her age-1 and age-2, and the third

term is the energy expense of the alpha male. Other than this constraint,

the somatic investment for each youth is determined by

zf = zm = z =
n1T1;f + n2T2;f + T�;m

n1f1 + n2f2
((14))

The steady state of the pride can be solved from the above expressions,

with the understanding that n1 and n2 being constant is valid only in a

density-checked equilibrium. In a steady state equilibrium, the population

age structure will appear, and the size of females aged a will be constrained

by the environmental density. We do not want to go into details here, for

that is not the purpose of our research. Here we want to study why males

are less likely to have a menopause than males.

Chu and Lee (2008) showed that a key reason for menopause to appear

is the division of labor between grandmothers and mothers. To specialize

in child-caring, the grandmothers have to give up their hunting time, which

in turn reduce their available energy. As the grandmothers move closer and

closer to specialized child-caring, their energy constraint pushes toward a

corner solution of their fertility, that uses much of their energy. This is how

menopause arises. >From (13) and (14) we can provide three reasons

for males not to have menopause:

� For females to have menopause, we have a life history choosing f2 = 0,
a particular corner solution. This would be a reasonable choice only

if the opportunity cost of f2 (which is cf ) is high, so that avoiding the

age-2 birth saves much energy of potential mothers. But for males,

since cm is trivially small, it does not pay for males to avoid m2. Even

if males do have m2 = 0, he cannot squeeze much energy out of it

anyway. Thus, an e¢ cient division of labor is unlikely to demand a

corner solution of m2 = 0 for old males.

� We see from Chu and Lee (2008b) that the division of labor is the key

observation of menopausal species. However, we have shown in the
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previous sections that the alpha male has little incentive to transfer

to children, due to the dilution e¤ect in a cooperative breeding group.

Even if the male does save some energy by choosingm2 = 0, he is likely

to move it to trait investment or body maintenance. Thus, because

the males do not give away energy, it is di¢ cult to form a division of

labor with the males.

� In a polygyny pride, if the male aged 2 stops producing sperm, then
all females in the pride are not able to reproduce o¤spring. Thus, it is

logically inconsistent to have the alpha male to have m2 = 0.

8 Inter-Sexual Selection

Our above analysis was restricted to the one-sided sexual competition of

males, not the two-sided interaction of males and females, of which the

literature describes as inter-sexual selection. The typical description on

inter-sexual selection is that the male has a gene controling the size of some

of their traits (such as plumage), and the female (such as a peacock) has a

gene controling her preference for mating males having such sizable traits.

The question is: if such traits appear to be useless or even harmful (e.g.

the excessively large plumage of male peacocks), why and how would this

trait-preference interaction arise from evolution?

There are two strands of theories that try to explain this evolution. The

�rst was proposed by Fisher (1930) who suggests that the advantage of

preferences lies in the choice of mates who will father attractive sons. If

females on average prefer a particular male trait, then males having that

trait will have a mating advantage. If this trait is heritable, then females

would also prefer to mate with males with this trait. Fisher argued that this

evolution may lead to a runaway process, leading to an ine¢ cient trait size,

such as the excessively large plumage of peacocks. However, as pointed out

by Pomiankowski et al. (1991), this runaway argument is valid only when

28



there is no cost associated with female preferences. If there is some cost (of

say searching), no matter how small, Fisher�s argument cannot go through.

The second hypothesis suggests that the bene�t of female preferences

hinges upon the improved survival of o¤spring. Zahari (1975) argued in his

well-known �handicap" theory that the male trait provides the female with

information about heritable male quality, very much like the idea of signal-

ing in economics. Iwasa et al. (1991) showed that a correlation between

male trait and viability is necessary to create an equilibrium with female

preferences. With respect to this handicap theory, most existing literature

uses quantitative genetic theories to present their arguments. In this sec-

tion, we shall use our life history model to demonstrate this theory in a very

neat way.

8.1 The Gene Dynamics

Consider a simpli�ed life history with only one period of life, so that we can

skip the age index associated with variables. The species in question has

monogamous marriages, and each couple bearsm children for sure. However,

there is some probability that a male cannot �nd a female willing to mate

him, and hence cannot give birth. Although mating models in general in-

volve a distribution of male traits and a distribution of female preferences, as

in the theory of quantitative genetics (see Iwasa (1991) p.1441), we consider

an equilibrium with the species�population concentrated sharply around the

population average, ( �T ; �S), where �T is the average trait size, and �S is the

average search intensity. We assume away all other parameters in our pre-

vious discussion, except b, the e¢ ciency parameter of maintaining survival.

The smaller is b, the more viable an individual is.

After skipping the age subscript, we let Mt be the value of a male gene,

and Ft be the value of a female gene at time t. Because growing traits and

searching for preferred males both cost energy,Mt and Ft are both functions

of male trait, female search, and the viability parameter b. Given that the
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average of T and S are ( �T ; �S), the dynamics of a male gene with T look like

Mt+1(T; b) = pm(T; b) �m
X
~s

hm( ~SjT ; �T ; �S)
h1
2
Mt(T; b) +

1

2
Ft( ~S; b)

i
where pm is the survival probability of males, which is a function of both

trait size T and parameter b. For instance, the survival probability of a male

peacock depends on the size of his plumage and his vigor. Term hm is the

male�s probability of mating a female with search level ~S, given that the

male trait is T , the male average is �T , and the female average is �S.

In an equilibrium with (T; S) nearly degenerated to the mean, ( �T ; �S),

given that the mail itself has �T , the equation of male gene dynamics can be

approximated as

Mt+1( �T ; �S; b) = pm( �T ; b) � km( �T ; �S)
h1
2
Mt( �T ; �S; b) +

1

2
Ft( �T ; �S; b)

i
;

with some function km. Similarly, the female gene dynamics can be written

as

Ft+1( �T ; �S; b) = pf ( �S; b) � kf ( �T ; �S)
h1
2
Mt( �T ; �S; b) +

1

2
Ft( �T ; �S; b)

i
;

with some function kf . Combining the above two equations, and let xt =

(Mt+Ft)=2 as before, we see that the intrinsic growth rate of the species is

�( �T ; �S; b) = [pm( �T ; b)�km( �T ; �S) + pf ( �S; b)kf (( �T ; �S)]=2:(14)

Note that in a stationary state, �( �T ; �S; b) = 1; which implies an implicit

function from (14):

b = b( �T ; �S):(15)

Equation (15) says that in any long run stationary equilibrium, there must

be a relation between viability e¢ ciency parameter b and ( �T ; �S) under the

force of selection. For instance, if a group of males have a large average

male trait size, then this group must be e¢ cient in the sense of having

a smaller b. This implies that the relationship between b and �T should be

negative. Similarly, in a stationary equilibrium there must also be a negative

relationship between b and �S.

30



8.2 The Trait-Search Interaction

Now we want to see how a mutation that changes trait size or search intensity

can prevail. The optimal life history suggests it must be true that the trait

and search reach their optimum. In the cass of an interior maximum, we

must have from (14)

@�( �T ; �S; b)

@ �T
= 0 =

@�( �T ; �S; b)

@ �S:

On this optimal life history path, we should not observe �clumsy" plumages,

that evidently hurt the males� intrinsic growth rate. The fact that we do

observe clumsy plumages suggests @�( �T ; �S; b)=@ �T < 0; meaning that the

marginal impact of increasing plumage on �tness index ia already negative.

The motivation of the discussion of sexual selection along the lines of Darwin

and Fisher was indeed to explain why some evidently excessively large tails

would appear.

Fisher�s (1930) �runaway argument tries to link T with S: sexy males

attract females, and hence females search for sexy males as mates. However,

this only creates a secondary bene�t of growing T , but does not justify the

investment of S. In fact, if the bene�t of search comes only through T , we

have

@�

@S
=
� @�
@ �T

��@ �T
@ �S

�
:

When T is chosen optimally on a life history path, @ =@ �T = 0, there is no

independent bene�t associated with S. Thus, if there is any cost associated

with S, then the optimal search should be zero. As such, Maynard-Smith

(1991) argued that the Fisher argument cannot justify a handicap phenom-

enon with positive search.

The handicap hypothesis suggests that natural selection must imply an

association between viability coe¢ cient b, trait size T and search intensity

S. In our term, natural selection implies a relationship in (15). A handicap

evolution is in fact a mutation of T in (14), taking into account the stationary
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condition (15). In a sense, this gene mutation is a very sophisticated one,

which seems to be a Stackleberg leader, taking into concern the evolutionay

response in (15), as the gene mutation changes the size of T . The �rst order

condition of maximizing T now becomes:

@�( �T ; �S; b)

@ �T
=
@�

@ �T
+
@�

@b

@b

@ �T
= 0; (16)

where @�=@b is derived from (15). Since @�=@b is negative (smaller b means

better e¢ ciency) and @b=@ �T is also negative (larger-tail mails are more ef-

�cient ones), it implies that on the optimal life history path, @�=@ �T

must be negative. Indeed, this is our interpretation of �excessive" tail

size: if you look at the marginal condition of tail alone, the tail seems to be

over-sized. The large tail can be justi�ed only when we take into account

the viability-selection relation between b and T in (15).

Suppose a gene is indeed �sophisticated" and it does take into account

the selection relationship in (15) as it considers a mutation. For a trait to

appear excessively large to attract our attention, however, it must be the

case that the organism can a¤ord to spend much energy on T . We have

shown in section 5 that since males� are constrained in reporduction and

they spend very little energy on producing sperms, they are more likely

than females to have extra energy for other uses. Indeed, in terms of Fisher

(1930), the male traits sometimes appear to �run-away", whereas female

traits never have show similar patterns. We believe that this is why we

observe evidently large plumages on males birds, but almost never observe

excessive search activities or traits of females. This kind of dimprphism still

originates from the divergence of male-female reproduction costs.

9 Conclusion

In this paper, we provide a uni�ed approach to explain sexual dimorphism,

intrasexual competition, and intersexual selection in biology. In terms of

analytical strucutre, we adopt a model of two-sex life history. Concerning
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the explanatory variable, we suggest that the di¤erence in male-female costs

of reproduction is the key. Using our model we are able to explain why

males are motivated to grow canine teeth, why fathers provide less transfers

to children, why there is a positive correlation between polygyny and sex-

size dimorphism, how the environmental factors of sex competition enter

our model, why males and females choose di¤erent mating lotteries, and

why only females are likely to have menopause? Finally, we are able to

explain the negative correlation between male traits and viability using our

framework of optimal life history. The reason we observe excessively large

organs in males, we believe, is also related to male�s low reproduction costs.

There are of course observations di¤erent from our prediction. For in-

stance, the hyena species has a matriarch instead of an alpha male, and the

alpha male of wolves picks only one female to mate instead of many. Indeed,

we believe the hyena and wolf cases indicate scenarios not covered by our

model. For instance, wolves and African wild dogs are peck hunters, who

need many agile individuals to join the hunt. Thus, they cannot have many

pregnant females. In terms of our model, the energy-generating function g

has to be speci�ed di¤erently. Hyenas have many predators such as lions,

and they cannot provide e¤ective protection for too many juveniles. This

implies that one pregnant female would be enough. In either case, these

examples fall into the broad-sense category of Emlen and Oring (1977) that

some resources are �unfendable", and hence some sexual interaction phe-

nomena do not arise. In fact, this is also why there is not much sexual

dimorphism in such species.
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