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1 Introduction

Mortality forecasts are a crucial aspect in the framework of population fore-
casting, affecting governments’ interventions in pensions and health-care sys-
tems. It is undoubtedly more common to find in the literature mortality fore-
casts based on disaggregated data, such as age-specific death rates, rather
than directly on life expectancy. If on one hand, modeling age-specific death
rates provides clear insights into mortality dynamics over age and time, on
the other hand, it does not guarantee the coherence of the forecast life ex-
pectancy. It is indeed the case, that forecasting mortality rates frequently
leads to underestimation of future life expectancy. This is, for example, a well
known result of the widely used Lee-Carter model (Lee and Carter, 1992),
when results are investigated through the application of the cross-validation
method. The model assumes a constant decline of the log-deaths rates, lead-
ing to a decelerating increase in life expectancy, as explained in Alho (1989).
Such direct outcomes contradict the linear trend found by White (2002) for
the series of the sex-combined life expectancies in 21 developed countries.

The previous considerations motivates our decision to forecast mortality
through the direct forecast of life expectancy. We will apply extrapolation
methods to project the historical mortality trends into the future, based
on the assumption that the conditions which led to changing mortality in
the past will continue to have a similar impact in the future. Hence, no
limitations to the future length of life are imposed.

Early works on life expectancy’s forecast are presented by De Beer and
Alders (1999), that describe the development of life expectancy at birth in
the Netherlands for men and women by a random walk with drift. Similarly,
Keilman et al. (2001) use ARIMA models to predict the future mortality of
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the Norwegian population. A more complex model was constructed by Alders
et al. (2007) for long-term stochastic population forecasts in 18 European
countries. They estimated a GARCH-type time series models, based on a
long series of life expectancy.

In the current work we apply two different models derived from the theory
of the time series analysis. First, we apply the classic and already mentioned
univariate ARIMA model, based on assumption of stability and stationarity
of the process. Later on, we consider the Structural Time Series Models,
framed in the more general structure of the state-space models. These models
relax the assumption of stationarity, present in the ARIMA models, and
assume time-varying parameters.

The next section presents the data we used for the analysis. Section 3
describes the ARIMA model and the Structural Time Series Model fitted on
the data. An application of the models to the data is presented in Section 4,
followed by a critical discussion of the method in Section 5.

2 Data

The analysis is conducted on Italian and U.S. data, taken from the Hu-
man Mortality Database (2008) (HMD) and the Berkeley Mortality Database
(1995) (BMD). With regard to the United States, the HMD includes data
only from 1933 to 2005. On the other hand, death rates by single year of
age, derived from life tables prepared by the Office of the Chief Actuary in
the (U.S.) Social Security Administration, run from 1900 to 1995. Italian
mortality data run from 1872 to 2006.

We select values of life expectancies at birth from 1900 to 2006 for Italy,
and from 1900 to 2005 for the United States. A plot of life expectancy at
birth in Italy and the United States, for both sexes is provided in Figure 1.
As may be observed also for most Western countries, life expectancies during
the first and second half of the century are characterized by different trends,
reflecting the shift that occurred in the primary causes of death.

The steady increase in life expectancy at birth observed in the first half
of the century is an effect of the reduction in infant and child mortality. This
trend is interrupted by obvious troughs during both the First and Second
World Wars, and during the Spanish influenza epidemic. Exceptional events
like these are excluded from our analysis, and their values are interpolated
with the adjacent values. The slower upward trend starting to be observed in
the late 1960s, reflects the reduction in old-age mortality (Torri and Vignoli,
2007).

Unlike Italy, the United States experienced a slow decline in mortality
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Figure 1: Life expectancy at birth for Italy and the U.S., 1900-2005. Females
(red lines) and males (blue lines) data.
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during the 1980s and 1990s, which was especially evident for females. Al-
though many researchers have tried to explain such an unexpected decelera-
tion in the improvement of life expectancy, no clear answer has been provided
yet (Meslé and Vallin, 2005; Pampel, 2002; Vaupel et al., 2006).

3 Methods

Our aim is to model the described trend of the stochastic process of life
expectancy at birth, and forecast it. We first consider the Autoregressive
Integrated Moving Average models (ARIMA), derived from the classic time
series analysis.

Follow the Structural Time Series (STS) models, a more flexible class of
models, where the assumption of stationarity is relaxed. These model aim
to present the characteristic components of a series, rather than to represent
the underling data generating process. The statistical formulation of the
components needs to be flexible enough to capture the general changes in
the direction of the series. The components are regarded as being driven by
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a random component, and handled in the state-space framework, with the
state of the system representing the various unobserved components of the
model. Once in the state-space form, the Kalman filter allows to update the
state as soon as new observations are available.

Common traits are shared by the two models. Assuming a linear struc-
tural time series models, with several disturbance terms, the different com-
ponents can be combined returning a model with a single disturbance. This
is a reduced form, corresponding to an ARIMA model characterized by re-
strictions on the parameter space. More insights on this aspect can be found
in Harvey (1989, p. 67).

3.1 The ARIMA model

Classic time series analysis is based on the theory of stationary stochastic
processes. A stochastic process is said to be stationary in a weak sense if
the mean and the variance of the process do not change over time, and the
covariance between values of the process at different time points depends
only on the distance between the time points, and not on the time itself.
Stationary stochastic processes are included in the Autoregressive Moving
Average (ARMA) model. If at least one of the conditions for stationarity is
not fulfilled, the process is non-stationary and standard parameter estimates
no longer have their conventional asymptotic properties. Processes exhibiting
non-stationary behaviour are included in the wider class of ARIMA models.
The order of integration of time series is the number of times that the series
must be differenced to make it stationary.

In a more general notation, we have an ARIMA(p, d, q) model, in which p
is the order of the autoregressive process, d indicates the order of integration,
and q is the order of the moving average process. Expressed as a formula,
the ARIMA(p, d, q) model is equal to:

∇dYt = δ + φ1∇dYt−1 + ... + φp∇dYt−p + εt + θ1εt−1 + ... + θqεt−q (1)

where δ is the drift term, a constant parameter indicating the average change
of the variable over time. φi, for i = 1, ..., p, are the parameters of the
autoregressive part and θj, for j = 1, ..., q, are the parameters of the moving
average part. The symbol ∇d is the differentiating operator of order d, and
εt−j is a sequence of i.i.d. random variables with mean zero and variance σ2.

The model selection strategies developed by Box and Jenkins (1976) help
to select an adequate model. The model is first identified, choosing within the
family of ARIMA models (e.g., AR(p), MA(q), ARMA(p,q), ARIMA(p,d,q))
and then estimated through maximum likelihood. A diagnostic checking of
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the model adequacy is also performed by looking at the fitted errors that
should be a white noise. If model diagnostics show that the selected model
is not adequate, the three-step procedure is repeated until the appropriate
model is specified.

3.2 Structural Time Series Model

A univariate Structural Time Series (STS) model is specified by components
that, though unobservable, have a direct interpretation. Such a model not
only provides the basis for predicting future observations, it also describes the
salient features of a time series. The classical decomposition model proposed
by Harvey (1989), is characterized by a deterministic nature, and is expressed
in the following way:

yt = µt + st + εt ,

where µt is a slowly changing function, the so-called level component, st is
a function with period d, the seasonal component, and εt is the stationary
random noise component.

In the specific case of life expectancy, we decompose the series into the
level and irregular components. The statistical formulation of the level com-
ponent needs to be flexible enough to respond to general changes in the
direction of the series. The model used to represent the process is called the
local linear trend model or linear growth model. The model is described as:

e0
t = µt + εt , (2)

where µt is the trend and εt is a white-noise disturbance term which is as-
sumed to be uncorrelated with any stochastic elements in µt.

The trend may take a variety of forms, and here specifically, we consider
the linear case. We have a deterministic linear trend when

µt = α + β · t ,

that becomes a stochastic trend by letting α and β follow random walks.
However this would lead to a discontinuous pattern of µt, and better results
are obtained working directly with the current level µt (Harvey, 1989).

Given µ0 = α, stochastic terms may be introduced with the following
equations describing the behavior of the local level µt and the local trend βt:

µt = µt−1 + βt−1 + η1t (3)

βt = βt−1 + η2t ,
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where ηit are mutually uncorrelated withe-noise disturbances with zero means
and variances σ2

ηi
. The current level µt changes linearly over time, but the

growth rate or trend βt may also change. The effect of η1t allows the level of
the trend to shift up and down, while η2t allows the slope to change.

Provided the decomposition of the time series of life expectancy into
level, slope, and irregular components, we have to test for the deterministic
or stochastic nature of each component. The parameters σ2

ε and σ2
ηi

are
unknown, and are referred to as the hyper-parameters. If σ2

η2
is zero, equation

(3) reduces to:

µt = µt−1 + β · t .

If both η1t and η2t have zero variance, equation (3) reduces to:

µt = α + β · t .

In this case the trend of the process is deterministic and it is forecast with a
straight line.

Under the assumption of normal distribution of the disturbances of εt

and ηit, the estimation of the STS model is obtained within the state-space
framework, where each component of the decomposition model is allowed to
evolve randomly over time. The initial sample is augmented by one observa-
tion, each advancing year, and the estimating equations are updated together
with the parameters estimation, by means of a Kalman filter (Durbin and
Koopman, 2001; Harvey, 1989). Follows a description of the estimation pro-
cedure.

3.2.1 State-Space models

The representation of a state-space model for a multivariate time series of an
observable variable yt, with dimension N × 1, consists of two equations. The
first is called the measurement equation and identifies the linear relationship
between the unobservable state vector αt, with dimension m × 1, and the
vector of measurements, yt. The equation is as follows:

yt = Zt αt + dt + εt t = 1, . . . , T , (4)

where the regression matrix Zt has dimension N×m, dt is a vector of dimen-
sion N × 1, and εt is the vector of dimension N × 1 of serially uncorrelated
disturbances with mean zero and covariance matrix Ht.

The second equation is called the transition equation and describes the
stochastic process of the state vector through a dynamic linear system char-
acterized by errors, with zero mean and known variance. The process is
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generated by a first order Markov process, and described by the following
equation:

αt = Tt αt−1 + ct + Rt ηt t = 1, . . . , T , (5)

where Tt is the transition matrix with dimension m×m, ct is an m×1 vector,
Rt is an m × g matrix, and ηt is an g × 1 vector of serially uncorrelated
disturbances with mean zero and covariance matrix Qt.

The specification of the state-space system is completed by assuming that
the initial state vector α0 has a mean equal to a0 and a covariance matrix
equal to P0. Additionally, it is assumed that the disturbances εt and ηt are
uncorrelated with each other in all the time periods and with the initial state
α0.

The system matrices Zt, Ht, Tt, Rt, and Qt - here assumed to be time
invariant - may depend on a set of unknown parameters, referred as hyper-
parameters, that should be estimated. The hyper-parameters determine the
stochastic properties of a model, while the parameters ct and dt affect only
the expected value of the state and observations in a deterministic way.

The estimation of the conditional distribution of the unobserved sequence
of states αt, given the observed data points yt, is solved by applying the
optimal recursive algorithm, known as the Kalman filter (Kalman, 1960).

3.2.2 The Kalman Filter

The Kalman filter is a recursive algorithm that consists of a set of equations
which allow for the updating of the estimate when a new observation becomes
available. It is called filter, because it practically filter the noise away from
the observation, in an optimal way. It combines all available measurement
data and prior knowledge about the system to produce an optimal estimate
of the desired variables αt. The recursive algorithm is characterized by two
distinct phases:

• the prediction phase, in which, given the available information, an op-
timal and a prior estimator of the state vector is obtained;

• the updating phase, in which, new information arrives and a posterior
estimation is obtained.

Under the assumption of normal distribution of the disturbances and
initial state vector α0, it is possible to calculate the distribution of αt, condi-
tional on the information set at time t. Let at−1 denote the optimal estimator1

1The one minimizing the mean squared error
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of αt−1, based on the observation up to and including yt−1. Pt−1 is the covari-
ance matrix of the estimation error which is equal to E[(αt−1− at−1)(αt−1−
at−1)

′]. Given the parameters at−1 and Pt−1, the optimal estimator of αt is
given by (see equation (5)):

at|t−1 = Tt at−1 + ct (6)

while the covariance matrix of the estimation error is

Pt|t−1 = Tt Pt−1 T ′
t + Rt Qt R

′
t . (7)

The two equations are known as the prediction equations. Once a new obser-
vation yt is available, the estimator of αt, at|t−1, can be updated trough the
following updating equations :

at = at|t−1 + Pt|t−1 Z ′
t F−1

t (yt − Zt at|t−1 − dt) (8)

Pt = Pt|t−1 − Pt|t−1Z
′
t F−1

t Zt Pt|t−1 ,

where Ft = Zt Pt|t−1 Z ′
t + Ht , t = 1, . . . , T .

These equations state that the optimal estimate at time t, at, is equal to
the best prediction of its value before yt is available, corrected by an optimal
weighting value times the prediction errors2.

The prediction equations together with the updating equations, construct
the Kalman filter. Therefore, the Kalman filter is a continuous succession
of the prediction phase, when a preliminary guess about the state of nature
is formulated, and the updating phase, when the initial guess is corrected.
The corrections are determined based on how well the guess has performed
in predicting the next observation.

The starting values of the Kalman filter may be specified in terms of
a0 = 0 and P0 = kI, where I is the identity matrix and k a very large
positive number, which may be considered a reasonable approximation of a
prior state of ignorance. Based on a decision regarding the initial conditions,
the Kalman filter provides the optimal estimator of the current state vector
αt, conditioned on the full information set {y1, . . . , yt}.

3.3 Forecasting

After a satisfactory model is found for both methods, forecasts can be com-
puted. Given the availability of data up to time T , the forecast will involve
the observations yT and the fitted residuals (i.e. the one-step-ahead forecast

2The prediction error is equal to the difference between yt and the best prediction of
its value.
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errors) up to and including T . The l-steps ahead optimal predictor of the
process, is the conditional expectation of yT+l at time T . It is defined as an
optimal predictor, since it minimized the mean square errors.

The estimation error, for any predictor, is equal to yT+l − ỹT+l|T =
[yT+l − E(yT+l|YT )] + [E(yT+l|YT ) − ỹT+l|T ], where YT denotes the informa-
tion set {yT , yT−1, . . . , }. Considering that the second term on the right hand
side is fixed at time T , after squaring the whole expression and taking condi-
tional expectation, we obtain the following expression for the MSE(ŷT+l|T ) =
V ar(yT+l|YT )+ [ŷT+l−E(yT+l|YT )]2. The first term on the right hand side is
not dependent on ŷT+l|T , and the second term is minimized when yT+l equals
the conditional mean E(yT+l|YT ). This is written as:

ỹT+l|T = E(yT+l|YT ) (9)

Under the assumption of independence of the residuals the predictorss
can be built up recursively by the chain rule.

4 Application

In the current section we apply the two models described in Section 3.1 and
3.2 to Italian life expectancy on the period from 1900 to 2006, and U.S. life
expectancy from 1900 to 2005.

4.1 Forecasting life expectancy with an ARIMA model

When working with the ARIMA models, the first thing to do is to test for
the stationarity of the series. Already from a visual inspection we can see
that the series is characterized by an increasing trend over time and hence by
a non-constant mean. It turned out indeed that the series are non-stationary
and it is necessary to differentiate them in order to become stationary.

Applying the model selection strategies proposed by Box and Jenkins
(1976), we select the most adequate ARIMA models for our data. Table
1 describes the order of the selected ARIMA models and the values of the
estimated parameters, together with the corresponding confidence intervals.
Bigger values of the drift δ are returned for females.

The same models are used to predict future life expectancy at birth until
the year 2050. The estimated future values of the life expectancy at birth
in the year 2050, together with the 80% and 95% prediction intervals are
provided in Table 2 and plotted in Figure 2. We expect that in the year 2050
Italy will experience a period life expectancy at birth of 101 years for females
and 94 for males, while for the U.S. we expect to observe a value equal to 94
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Table 1: Order of the ARIMA model selected for Italy and the U.S. on the
data periods 1900-2005, by sex.

Female Male
Italy Usa Italy Usa

ARIMA(p,d,q) (1,1,0) (0,1,1) (0,1,1) (0,1,1)

δ 0.5765 0.2975 0.3479 0.2720
s.e. (0.0628) (0.0444) (0.0542) (0.0448)
φ1 -0.4596 - - -
s.e. (0.0956) - - -
θ1 - -0.1739 -0.3092 -0.2125
s.e. - (0.1156) (0.0886) (0.1243)

for females and 87 for males. More information is provided by the prediction
intervals.

Considering that the stability of the processes, is on the assumptions
underlying the ARIMA model, we were curios to inspect the impact on the
results of a changing data period. We thought it would be interesting to
evaluate the future values of life expectancy in 2050 based on several data
periods. For this purpose, we assumed that the ARIMA model estimated on
the longest period 1900-2005 is also suitable for shorter periods. Estimations
are recursively performed on a decreasing number of observations that move
progressively from a longer (1900-2005) period to a conventionally chosen
shorter data period (1980-2005). The smallest series included 26 observations
because we deemed performing estimations on a smaller sample of data to be
inappropriate. Figures 3 and 4 depict the estimated future life expectancy in
the year 2050 and the corresponding parameters, whereby each of the values
is the result of application of the model on a progressively smaller sample of
data.

Predicted life expectancies shift from relatively constant values before
1950, to lower and increasing values for males and decreasing values for fe-
males after 1950. The different amplitudes of the prediction intervals are
also remarkable. The changes observed around the year 1950 are expected,
but the rapidity of the changes in the level of life expectancy in 2050, along
with a change occurring in the trend, are surprising. The graphs suggest that
the process may not be as stable as was initially assumed, and that changes
occur exactly at that critical point. Further investigation of the assumption
of stability of the process may be necessary to ensure that our estimations
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Figure 2: Actual and forecast life expectancy at birth using an ARIMA
models with associated 80% (dotted) and 95% (solid) prediction intervals.
Italy, and the U.S., 1900-2050. Females (red lines), males (blue lines).
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Table 2: Forecast life expectancy at birth in 2050 by ARIMA models with
80% and 95% prediction intervals. Italy, and the U.S.. Models evaluated on
the data period 1900-2005.

Italy Usa

Female
e0 101.47 93.72
80% CI (96.46–106.53) (90.00–97.44)
95% CI (93.79–109.21) (87.47–100.00)
Male
e0 93.91 87.49
80% CI (86.59–101.22) (83.52–91.46)
95% CI (86.59–101.22) (80.68–94.36)
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Table 3: Hyper-parameters from STS model on life expectancy. Italy and
the U.S., 1900-2005, both sexes.

Italy Usa

F M F M
σ2

ε 0.2224 0.1992 0.0221 0.0474
σ2

η1
0.2863 0.3107 0.2665 0.2615

σ2
η2

0.0000 0.0000 0.0006 0.0000

are unbiased.

4.2 Forecasting life expectancy with a STS model

The results obtained in the former section motivate the decision to use a
more flexible time series model like the STS model, where no assumption
of stability and stationarity is made, and whose parameters are assumed to
vary with time.

Combining the notion of the STS model presented in Section 3.2 and the
state-space notation in sub-Section 3.2.1, we obtain the following local linear
trend model to represent the behaviour of life expectancy at birth. The
observable process e0 is determined by the following measurement equation:

e0
t = [ 1 0 ] αt + εt , (10)

and the transition equations linked to the state vector, α, can be written in
the equivalent form:

αt =
[ µt

βt

]
= [ 1 1

0 1 ]
[ µt−1

βt−1

]
+ [ 1 0

0 1 ] [ η1t
η2t ] , (11)

where Z = [ 1 0 ], T = [ 1 1
0 1 ], Ht = σ2

ε , R = [ 1 0
0 1 ] and Q =

[
σ2

η1
0

0 σ2
η2

]
.

Applying the model to our data, we obtain the time varying values of the
local level, local trend, and irregular components, plotted in Figure 5.

The estimated local levels show an increasing trend that is driven by the
local trends and a stochastic component. The local trends are characterized
by almost constant values. The presence of a deterministic slope is further
confirmed by the values of σ2

η2
, that are not significantly different from zero,

with the only exception of U.S. females. The estimated values of the hyper-
parameters are given in Table 3.
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Figure 3: Estimation of the parameters of the ARIMA model for Italy and
the U.S., by sex, evaluated on a data period beginning at different point in
time T0, and ending in 2005. Males (blue) and females (red) data.
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Figure 4: Forecasted life expectancy at birth for the year 2050, for Italy and
the U.S., by sex evaluated on a data period beginning at different point in
time and ending in 2005. Males (blue) and females (red) data.
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Figure 5: Local level, local trend, and irregular component. STS model
applied on life expectancy at birth. Italy, and the U.S., 1900-2005. Females
(red lines) and males (blue lines).

50
60

70
80

lo
ca

l l
ev

el

0.
0

0.
2

0.
4

lo
ca

l t
re

nd

−
2

0
2

4

1900 1920 1940 1960 1980 2000

re
si

du
al

s

Time

Italy

40
50

60
70

80

lo
ca

l l
ev

el

0.
0

0.
2

0.
4

lo
ca

l t
re

nd

−
2

0
2

4

1900 1920 1940 1960 1980 2000

re
si

du
al

s

Time

Italy

50
60

70
80

lo
ca

l l
ev

el

0.
0

0.
2

0.
4

lo
ca

l t
re

nd

−
2

0
2

4

1900 1920 1940 1960 1980 2000

re
si

du
al

s

Time

Usa

50
60

70

lo
ca

l l
ev

el

0.
0

0.
2

0.
4

lo
ca

l t
re

nd

−
2

0
1

2
3

4

1900 1920 1940 1960 1980 2000

re
si

du
al

s

Time

Usa

15



Table 4: Forecast life expectancy at birth in 2050 by STS model with 80%
and 95% prediction intervals. Italy, and the U.S.. Models evaluated on the
data period 1900-2005.

Italy Usa

Female
e0 101.32 87.62
80% CI (95.86–106.78) (77.91–97.34)
95% CI (92.97–109.67) (72.76–102.49)
Male
e0 93.67 87.52
80% CI (87.99– 99.35) (81.98–92.48)
95% CI (84.99–102.35) (79.21–95.26)

For those data returning a null variance of the local trend component,
σ2

η2
, the model used to describe the behaviour of life expectancy is reduced

to the simpler local level model:

e0
t = µt + εt

µt = µt−1 + β + η1t .

Future values of life expectancy are plotted in Figure 6, and the corre-
sponding values in the year 2050 are given in Table 4. The prediction suggests
big advancements for the Italian female life expectancy, characterized by a
steep increase. Predicted female life expectancy for the year 2050 reaches the
value of 101 years for Italy, and 94 for the U.S.. The initial gap of 3 years
observed between the U.S. and Italy in 2005 is expected to rise by 2050 to
almost 8 years. The results for men show a similar trend. Future values of
men life expectancy in the year 2050 are equal to 94 for Italy, and 87 for the
U.S.. The initial gap in life expectancy between U.S. and Italy was three
years in 2005, and is expected to widen by 2050 to 7 years.

A visual inspection suggests that the future values of female U.S. life
expectancy follow a smooth path. It is questionable, however, whether the
gap between male and female life expectancy will decline to such an extent.
We can believe that if no actions are undertaken to improve U.S. female
mortality, which has worsened in recent years, this scenario is likely.

16



Figure 6: Actual and forecast life expectancy at birth using an STS model
with associated 80% (dotted) and 95% (solid) prediction intervals. Italy, and
the U.S., 1900-2050. Females (red lines), males (blue lines).
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5 Conclusions

The urge to compute mortality forecasts, utilized by governments when plan-
ning the allocation of their resources between the pension and health-care
systems, stimulate a vivid interest in the topic.

In the current work we directly performed forecast of the stochastic pro-
cess of life expectancy at birth, aiming to model the linear behaviour of the
series observed in the past. With this respect, two different extrapolation
methods are applied. We began applying the widely used ARIMA model
to Italian and U.S. data, and found out that the assumed stability of the
process is not confirmed by the data. Namely, the parameters of the ARIMA
model that we assumed generated the process, are not constant over time,
but changing.

Alternatively, we proposed a more flexible model, that relaxed the as-
sumptions of stability and stationarity of the process, previously made. We
used the so-called Structural Time Series models, generally applied in disci-
plines other than demography, such as engineering. Written in a state-space
framework, such model allow to update the estimated future trends as the
sample period changes.

The two distinct models used to forecast life expectancy produced quite
similar results of the median value of life expectancy in the year 2050. The
only exception is the U.S. female life expectancy, that shows a gap of ap-
proximately 6 years in the forecast value. The exception in U.S. females was
already observed in the estimated value of the hyper-parameter of the local
trend component. A value of the variance different from zero, captured the
stochastic behaviour of the local trend component. Slightly different estima-
tion of the prediction intervals are returned. Using a more flexible model we
have been able to capture and forecast the slow decline in American female
mortality, already observed from the 1980s. It is questionable whether these
trend will persist in the future. Corrective actions may be undertaken by the
government to improve recent trends in mortality.
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