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Abstract 
Using data from the Health and Demographic Surveillance System (HDSS) in Matlab, 

Bangladesh, and exploiting dynamic panel data models, we analyze siblings’ death at 

infancy, controlling for unobserved heterogeneity and a causal effect of death of one child 

on survival chances of the next child. Our model predicts that in the comparison area, the 

likelihood of infant death is about 30% larger if the previous sibling died at infancy than if 

it did not, and estimates suggest that, in the absence of this “scarring” effect, the infant 

mortality rate among the second and higher order births would fall by 6.2%. There is no 

evidence of such scarring effect in the treatment area, perhaps because learning effects play 

a larger role with the available extensive health interventions. We find that distance to the 

nearest health clinic can explain a substantial part of the gap in infant mortality between 

the two areas.   
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1. Introduction 

By 1993-1994, according to the first Demographic and Health Survey (DHS) in 

Bangladesh, the child mortality rate (mortality before reaching the age of five years) was 

133 per one thousand live births and the infant mortality rate (mortality before reaching the 

age of one year) was 87 per one thousand live births (reference period 1989-1993). Infant 

deaths thereby accounted for 65 percent of all under-five deaths. Since then Bangladesh 

recorded a sharp decline in under-five deaths – with 65 deaths per one thousand live births 

in the period 2002-2006 and a 0.5 percentage points decline each year. In contrast, infant 

deaths declined by only 0.2 percentage points (from 87 to 52 deaths per one thousand live 

births) over the same period. In view of the millennium development goal to reduce under-

five mortality in Bangladesh by two thirds between 1990 and 2015 (see United Nations, 

2001) further reduction of these rates remains an important target.  

 

There is a considerable amount of research on the determinants of infant mortality, 

focusing on, for example, the fact that mothers who get their children at a younger age and 

mothers with little or no schooling are at higher risk. Recent demographic data from a wide 

range of countries have revealed that child deaths are clustered within families, due to 

observed and unobserved characteristics of the mother, the family, or the local community, 

and possibly also due to a causal effect of death of one child on the survival chances of 

later siblings (Das Gupta, 1990; Guo, 1993; Zenger, 1993; Sastry, 1997; Arulampalam and 

Bhalotra, 2006; Omariba et al., 2008). Following the recent work on siblings’ death-

clustering by Arulampalam and Bhalotra (2006), which is a methodological improvement 

over the previous studies, our paper investigates interfamily heterogeneity in infant deaths 

in a rural area in Bangladesh. The main methodological differences with Arulampalam and 

Bhalotra (2006) are twofold. First, prospective data are used rather than retrospective data 

on birth histories, making it possible to use explanatory variables that vary over time and 

are measured around the time of each child birth rather than only at the time of a 

retrospective survey. Second, the data cover two different areas, one with standard 

government health services and one with more extensive surveillance and health care, 

allowing for an analysis of the differences between the areas and giving insight in the 

consequences of providing extra health services.      

 

The data come from the Health and Demographic Surveillance System (HDSS) in Matlab, 

a rural area in Bangladesh, with regular collection of prospective data for birth, death and 

other relevant information. HDSS is split up into two areas: the so-called ICDDR,B area 
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(the treatment area) and a comparison area.  A general decline in under-five mortality took 

occurred in both areas until 1990, except in 1984 when the Shigella epidemic peaked. 

Since then an impressive decline in under five mortality is observed, resulting in a 

mortality rate of 45.3 per one thousand live births in the ICDDR,B area and 60.2 per one 

thousand live births in the comparison area in 2005 (HDSS, 2006).  

 

Our main findings are the following. After controlling for all observed and unobserved 

differences between mothers, there is evidence of “scarring” - a negative causal effect of 

infant death on the survival chances of the next sibling - in the comparison area. No 

evidence of scarring is observed in the ICDDR,B area, where health care facilities are 

better; perhaps this is because  learning effects play a role with the available extensive 

health interventions. Conditional on other covariates, we find that boys are more likely to 

die in the ICDDR,B area whereas no gender differences are found in the comparison area. 

The probability of infant death falls with the education level of the mother, particularly in 

the ICDDR,B area. Mother specific unobserved heterogeneity is found to play a significant 

role – it captures about 18 percent of the total unsystematic variation in the ICDDR,B area 

and 8 percent in the comparison area. Decomposing the gap in infant mortality between the 

two areas into several shows that distance to the nearest health clinic can explain a 

substantial part of the gap.   

 

The remainder of our paper is organized as follows. Section 2 briefly discusses the related 

literature. Section 3 presents the data source. The empirical model is explained in Section 

4. Section 5 introduces the variables used in the empirical model and presents some 

descriptive statistics. Estimation results are discussed in Section 6. In Section 7, 

decompositions of the mortality differential between treatment and comparison area are 

performed. Section 8 interprets some of our main findings and concludes.     

 

2. Background 

Death-clustering of siblings is widely noticed in the demographic literature of many 

developing countries, including Bangladesh (Hobcraft et al., 1985; Koenig et al., 1990; 

Das Gupta, 1990; Sastry, 1997; Guo and Rodriguez, 1992; Miller et al., 1992; Curtis et al., 

1993; Zenger, 1993; Guo, 1993; Majumder et al., 1997; Alam and David, 1998; 

Arulampalam and Bhalotra, 2006, 2008; Bhalotra and van Soest, 2008; Omariba et al., 

2008). Possible factors explaining death clustering are that siblings share the same genetic 

traits; that the mother has similar problems at several births such as premature delivery or 
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intrauterine growth retardation; maternal inability to take care of the child or manage the 

household;d and environmental factors such as poor water supply.  

 

Death clustering of siblings can also be due to a causal process called state dependence. 

Arulampalam and Bhalotra (2006) refer to the notion that the death of one child may result 

in a higher risk of death for the next child as (positive) scarring. An explanation of state 

dependence is that a child’s death leaves the mother depressed as a result of which her 

subsequent child’s health is compromised in both womb and infancy (Steer et al., 1992; 

Rahman et al., 2004). This is referred to as the depression hypothesis. Another explanation 

of positive scarring is that women whose child dies have their next birth sooner (the 

replacement hypothesis), and the resulting closely-spaced pregnancies may lead to 

nutritional depletion which affects the health of the next born child (Gyimah and Rajulton, 

2004; Hobcraft et al., 1983; Cleland and Sathar, 1984; Koenig et al., 1990; Zenger, 1993; 

Miller et al., 1992; Da Vanzo and Pebley, 1993). 

 

Alternatively, one might also expect “negative scarring” mechanisms, in the case of 

competition for the use of family resources: if the previous child has died, the next child 

competes with fewer siblings, potentially improving its survival chances. Learning effects 

may also lead to negative scarring. For example, if the older sibling dies because of 

diarrhoea or acute respiratory illness (ARI), the mother may then learn how to prevent that 

her next child dies from the same cause. 

 

Demographers using data on siblings’ death-clustering have long been interested in 

knowing whether unobserved factors at the family level, such as genetic factors, lead to 

biased parameter estimates (estimates without accounting for the correlation among deaths 

of siblings), and spurious correlation (reverse causality), which may have important 

implications for conclusions concerning policy design. The conventional statistical tools in 

previous studies on child mortality (e.g., DaVanzo et al., 1983; Hobcraft et al., 1985; and 

Koenig et al., 1990) often made the assumption that unobservables in the death risk of 

consecutive children are independent of each other, and this may lead to biased estimates if 

mother specific unobserved heterogeneity plays a role (Guo, 1993).  

 

                                                   
d
 For example, Das Gupta (1990) argues that some women are less resourceful in caring for 

their children and managing household activities.  
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Zenger (1993) discussed different statistical methods for accommodating the correlation 

structure of the death of siblings. The first approach is to estimate a marginal logistic 

model, which avoids the problem of misspecification because no assumptions are made 

about the form of correlation. The second approach is to accommodate the correlation by 

including the survival outcomes of older siblings as explanatory variables in the regression 

model, leading to a transition model or Markov model. The third approach is known as the 

random intercept model, which allows for unobserved family specific mortality risks that 

follow some probability distribution. However, the models Zenger estimated included 

either the previous child’s survival status or unobserved heterogeneity but, in no case, both.   

 

Guo (1993) and several other studies (Curtis et al., 1993; Sastry, 1997; Bolstad and Manda 

2001) have included survival status of the preceding sibling in the model allowing for 

unobserved heterogeneity. They did not, however, interpret these effects in terms of 

causality and correlation. According to Arulampalam and Bhalotra (2006), the estimated 

coefficient on the survival status of the previous sibling was biased in all these studies. 

Additional studies on siblings’ death-clustering, including some based upon data from 

Matlab, discarded the first-born child in the family, implying that the estimates suffer from 

an initial conditions problem (Heckman, 1981), resulting in a potential bias in the 

estimates.  

 

As an important methodological development, Arulampalam and Bhalotra (2006) 

developed a new way of consistently estimating models incorporating both previous 

sibling survival status (as a lagged dependent variable) and unobserved heterogeneity and, 

in addition, interpreted the former in terms of a causal process. They addressed the issue of 

initial conditions by modelling the birth of the first child and rejected the null hypothesis of 

an exogenous initial condition (no correlation between the family level unobservable and 

the survival status of the first child), implying that studies not accounting for the initial 

condition indeed lead to biased estimates. Their modelling approach forms the basis of our 

paper. It was used earlier by Arulampalam and Bhalotra (2008) and Omariba et al. (2008) 

and extended to incorporate birth spacing and fertility by Bhalotra and van Soest (2008).   
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3. Data  

Health and Demographic Surveillance System, Matlab 

Since 1966, the International Centre for Diarrhoeal Disease Research, Bangladesh 

(ICDDR,B) has maintained a Health and Demographic Surveillance System (HDSS) in 

Matlab, a typical rural area located 60 km southeast of Dhaka in which all births, deaths, 

causes of deaths (through verbal autopsy), pregnancy histories, migrations in and out of the 

area, marriages, divorces, and several indicators of socioeconomic status are recorded for 

the complete population of about 220,000 people.  

 

ICDDR,B started the Maternal Child Health and Family Planning Programme (MCH-FP) 

project in October 1977 in half of the HDSS area, formerly known as MCH-FP area and 

currently as ICDDR,B area, which enhanced government health services and collected 

additional data on a range of health indicators – immunization status with specific date, 

breast-feeding, morbidity status (e.g., Diarrhoea, ARI), causes of death (based on verbal 

autopsy), and MUAC measures for nutrition status. The other half of the area, known as 

comparison area, remained under the usual programme of the Government of Bangladesh.  

Health and Demographic data have been collected systematically through regular 

household visits (every 2 weeks until January 1998, and once every month since then). 

 

At each birth, the child is registered and the mother is asked about her previous pregnancy 

histories, including live births, gender, deaths, and stillbirths. Furthermore, causes of death 

are matched with the mother’s pregnancy history.  Pregnancy history variables provide us 

with all information on the children of a woman if all the births the woman gave took place 

in the HDSS area and were registered at birth. Alternatively, if a woman migrated out and 

gave birth outside of the HDSS area and again migrated in with the child at age below five 

years, the child was still registered (birth date, survival status, etc.) in HDSS.  Otherwise, 

the child’s records are not registered in HDSS, leading to incomplete records for mothers 

who did not always live in the HDSS area.  

 

Study Sample 

We combined the health and demographic surveillance system data from 70 villages in the 

ICDDR,B area and 79 villages in the comparison area obtained from 1 July, 1982 until 31 

December, 2005 (the study period). Data from before 1 July 1982 have not been (yet) 

made available for research. 
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The complete data set has records on about 63,000 mothers, with more than 165,000 child 

births – including live singleton births, multiple births, and still births. For our purposes, 

however, we selected a subsample of mothers without multiple birthse and with completef 

live birth information who were continuously living in the Matlab area after the birth of 

their first child. This implies that we deleted mothers who migrated out of Matlab during 

the period under study. Moreover, we discarded stillbirths.g  Finally, we have excluded the 

children of three villages which shifted from the ICDDR,B area to the comparison area in 

2000. This leads to working samples of 31,968 children and 13,232 mothers in the 

ICDDR,B area and 32,366 children and 11,856 mothers in the comparison area, with the 

mothers in both areas residing continuously in the same area during the whole study period 

and having all their births in the same area. 

 

4. Model Specification  

This paper models the propensity of death in infants among Bangladeshi families, allowing 

for the identification of state dependence (scarring) and taking account of the potentially 

confounding effects of unobserved inter-family heterogeneity. State dependence refers to 

whether the survival status of the previous child (t-1) of a family (i) has an influence on the 

death of the next child (t) at infancy.  

 

Let there be Ti children born alive in family i (i=1, 2,…,N – the number of families or 

mothers in the sample). Let t=1, 2,…,Ti denote birth order. The unobserved propensity to 

experience an infant death, y*it, is specified for children of birth order 2 or higher as 

 

  y*it= x'itβ + γyit-1 + αi + uit  ……………………………………………………(1) 

 

                                                   
e We eliminated multiple births as children of a multiple birth face much higher odds of 
dying requiring a separate analysis, as has been documented in the demographic literature.   
f To have complete birth information of a woman during the study period we have 
calculated parity (total number of live births) from the pregnancy history variables. We 
have checked parity and birth dates of all children. For example, if a mother has parity four 
this means this mother has had four live births, so the birth dates of four children should be 
available in the file and this mother will appear four times as giving birth. If this was not 
the case (e.g., if a child was born outside of the Matlab area or before study period or 
deleting multiple births may caused incomplete birth information of a mother), we have 
deleted all children’s records of this mother. 
g One reason why we eliminated stillbirths from the data is that gender is an important 
covariate in our analysis but gender is missing for stillbirths.   
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Here y*it is the unobserved propensity of infant death. The observed infant death outcome 

yit = 1 if the child’s propensity for death crosses a threshold normalized to zero, that is, if 

y*it >0; otherwise, if y*it ≤ 0, yit = 0 and the child does not die in infancy. xit is a vector 

of strictly exogenous observed explanatory variables and β is the vector of coefficients 

associated with xit. The term αi captures unobserved heterogeneity at the family (mother) 

level which remains the same for all births of a given mother, accounting for all 

unobservable family characteristics including genetic characteristics and variables such as 

innate maternal ability which influence the index child’s propensity to die. The coefficient 

γ is associated with state dependence – the effect of death in infancy of the previous child 

on the next child’s survival chances - and the null hypothesis of no state dependence 

implies that γ=0.h 

 

The model assumes that the history of infant deaths among older children other than the 

immediately preceding child has no direct effect on y*it. For example, if child t-2 died in 

infancy then in our model this will affect the risk of death of child t-1 and, thereby, also the 

risk of death of child t, but there is no direct effect on death of child t. This is the first order 

Markov assumption (Zenger, 1993; Arulampalam and Bhalotra, 2006).  

 

The model can be seen as a dynamic binary choice (unbalanced) panel data model, where 

the cross-section units are mothers (i) and birth order replaces time (t). Such models have 

been studied and applied in numerous studies (Hsiao, 1986, and Wooldridge, 2002), e.g. in 

the context of unemployment scarring (Heckman, 1981, and Stewart, 2007), and have 

recently also been used to analyze clustering of infant deaths in India and Kenya using 

retrospective data on birth histories in cross-sections of the Demographic and Health 

Survey (Arulampalam and Bhalotra, 2006, 2008; Omariba et al., 2008). The current paper 

extends the proposed model in terms of the covariates used, exploiting the data from HDSS 

which are collected prospectively. All time-varying covariates in the model except access 

to piped water are collected at each time the mother gave birth. This data have an 

advantage compared to retrospective survey data in terms of time consistency of dependent 

and independent variables, enriching the set of covariates that can be used without the 

introduction of measurement error.  

                                                   
h In principle it would be possible that child t dies in infancy before child t-1 does, 
violating the sequence of events assumed in our model. This never happens in our data and 
is therefore ignored. 
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With the above specifications the conditional probability of death for an infant t of mother 

i, given yit-1, xit, and αi xit, is given by:  

 

P[yit=1| yit-1, xit, αi ] = Φ [(x'itβ + γyit-1 + αi)] ………………………………….(2) 

 

where Φ denotes the cumulative distribution function of the standard normal distribution.  

 

The joint conditional probability of the observed sequence of binary outcomes given α is 

given by: 

 

P(yi1,…….…., yi,T(i) | αi, xi1, …, xiT(i)) = 

P(yiT(i)|yiT(i)-1, αi, xiT(i)) P(yi,T(i)-1|yi,T(i)-2, αi, xi,T(i)-1) 

…… P(yi2|yi1, αi, xi2) P(yi1| αi, xi1)…...........................................(3) 

 

It is clear from the sequence above that it is necessary to give a specification for 

P(yi1|αi,xi1) (the “initial condition problem” in dynamic models with unobserved 

heterogeneity (e.g. Heckman, 1981). Modelling the outcome for the first child is especially 

relevant because the first child shares unobservable traits αi with its younger siblings. If 

there were no unobserved heterogeneity (αi,=0 for all i) then the initial observation could 

be treated as exogenous, and the model that is given in equation (1) could be estimated by 

using the sample of second and further children. Alternatively, Hsiao (1986) showed that 

the initial condition problem can be ignored even with unobservable heterogeneity if the 

time dimension of panel (T(i)) is large, but in our case T(i) is the total number of children 

born in family i, and this is typically small, so that asymptotic results based upon large T 

will not apply. Since the correlation between αi and yit-1 that makes yit-1 endogenous in 

equation (1) is probably positive, ignoring it would probably lead to overestimation of the 

state dependence coefficient γ (Fatouhi, 2005). This is why we specify a separate equation 

for the risk of mortality of the first-born child of each mother. The equation for the process 

of generating first observations will have the same form as for equation (1)i and is given by 

 

                                                   
i See Arulampalam (2007) for a discussion of alternative approaches to modeling the initial 
condition. 
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y*i1= x'i1π + θαi + ui1  ………………………………………………………...(4) 

 

Exogeneity of first child survival corresponds to θ=0 which can be tested in a standard 

way. The distribution function is same as for equation (1). The probability of infant death 

for the first born child corresponding to equation (4) is given by:  

 

P(yi1=1|αi, xi1) = Φ [x'i1π + θαi] ………………………...…………………....(5) 

 

Assuming the error terms ui1 and uit for t>2,…., T(i) are independently distributed 

following standard normal distributions, combining the equations (1) and (4) gives a 

complete dynamic model for all observations with observed and unobserved heterogeneity 

at family level i. The conditional probability of an observed sequence of binary outcomes 

yi1,…, yiT(i) for infant survival and deaths for all children of family i can be written as: 

 

P (yi1,yi2, ...yiT(i) |xiT(i),…, ,xi1, αi) =  

Φ{(x'i1π + θαi)(2yi1 – 1)}Π{Φ(x'itβ + γyit-1 + αi)(2yit – 1)}……………(6) 

  

and marginalizing the likelihood with respect to the unobserved heterogeneity component 

αi gives the following likelihood contribution for family i: 

 

Li = ∫ P (yi1,yi2,...yiT(i)|xiT(i),…,xi1,α)ƒ(α) dα ………………………………………….(7) 

 

where ƒ(α) is the probability density function of α, which is taken to be normal with 

mean 0 and variance σ2
α  independently identically distributed and independent of all other 

observables and unobservables. The integral in (7) is computed using Gauss-Hermite 

quadrature (Butler and Moffitt, 1982).  

 

The joint random-effects dynamic probit model taking account of initial conditions is non-

standard and cannot be estimated using the routines available in standard statistical 

software. Stewart (2007) has written Stata code for fitting the random-effects dynamic 

probit model, and we have fitted this model in our data. Our results are based on specifying 

32 quadrature points. 

   



 11 

5. Variables and Descriptive Statistics  

The dependent variable infant death (yit) is defined as 1 if the child is observed to die 

before the age of 12 months and as 0 otherwise. One of our main interests is in the effect of 

the lagged dependent variable yit-1, the infant survival status of the preceding sibling. The 

other explanatory variables are included in xit.  

 

All child specific covariates xit are measured at the time of birth: birth order of the child, 

gender, and the age of mother at birth of the index child; education of the mother is 

denoted by a set of dummy variables for the years of schooling attained (no schooling (the 

omitted category), 1 to 5 years of schooling, or 6 or more years of schooling). The 

mother’s education level may proxy her ability to take good care of her children but may 

also proxy the family’s socio-economic status. Similarly, education and occupation of the 

father are included with a set of dummy variables, mainly reflecting the family’s 

socioeconomic status.  

 

Following Arulampalam and Bhalotra (2006), birth intervals are not included. Our 

estimates of the effect of scarring will therefore include the potential effect through 

replacement – if infant death reduces the time until the next conception due to a desire to 

replace the child that was lost, and a short birth interval increases the probability of infant 

death, then this is one mechanism that leads to positive “scarring”. On the other hand, it 

also makes the birth interval endogenous (e.g., it is correlated with the mother specific 

effect in the infant mortality equation) so that explicitly separating this effect from other 

scarring effects requires a more complicated model (cf. Bhalotra and van Soest, 2008).  

 

The mother’s birth cohort also enters the model, giving insight in the trend of scarring over 

time. Another family level covariate is religion: following Bhalotra et al. (2008) who find 

that in India, Muslims have lower mortality probabilities than otherwise similar Hindus, we 

include a dummy for Muslims. More than 80% of the mothers in our sample are Muslims, 

the others are mainly Hindus.  

 

To control for environmental factors, we include a dummy for access to running drinking 

water (piped drinking water / tube well). Moreover, we include the distance to the nearest 

health facility, defined as a sub-centre or ICDDR,B hospital in the ICDDR,B area and a 
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Upazila Health Complex in the comparison area.j This variable differs substantially 

between the comparison area and the ICDDR,B area, because of the additional health 

facilities in the latter. 

 

A profile of both areas is given in Table 1, presenting percentages of outcome 1 for 

dummy variables and sample means for the other variables.  The average number of 

children born per mother is 2.42 in the ICDDR,B area and 2.73 in the comparison area; 19 

percent of families had more than three children in the ICDDR,B area, compared to 29 

percent in the comparison area. 82.7 percent of all women in the ICDDR,B area and 89.8 

percent of the comparison sample are Muslims.  No differences are observed in average 

schooling years or mothers’ age at birth between the two samples. A somewhat higher 

percentage of women in the comparison area are categorized as “no schooling.” This 

includes those who attended Maktab/Madrasa, academic institutions where religious 

education is given. Sources of drinking water use are categorized into two as 0 

‘pond/river/tank’ versus 1 ‘tubewell/filter’. The comparison area mothers less often have 

access to the more hygienic source of drinking water (tubewell/filter). Mothers residing in 

the ICDDR,B area are much nearer to a health facility (2 kilometres on average) than their 

counterpart mothers in the comparison area (7 km on average).  

 

In the ICDDR,B area sample, a total of 1,599 (5.00% of all births) infant deaths in the 

sample occurred to 1,390 families (10.50% of all families), so that 11,842 (89.50%) 

families had no experience of infant death. Moreover, 0.01 percent of all families lost all 

their children in infancy. The percent of first born children is 41.4 and the percent of infant 

death of first born is 6.63, which is substantially higher than the infant death rate of all 

children (5.00%). 

 

In the comparison sample, 2,180 (6.74% of all births) infant deaths occurred to 1,834 

families (15.47% of all families); the remaining 84.53 percent of all families did not 

experience any infant deaths. Like in the ICDDR,B area, 0.01 percent of all families lost 

their all children at infancy, and the percentage of infant death is higher among the first 

born children than among other children (8.78% for first born; 5.55% for other children).  

                                                   
j
 The health facilities offer emergency obstetric care (EOC), antenatal care, delivery, 
referral and contraceptive services, counseling on side effects of contraceptive use, and 
health education. In addition, children with minor illnesses are treated, while children with 
severe illnesses are diagnosed and referred to a hospital. Children suffering from 
malnutrition are also treated.  
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Among families experiencing infant deaths, about 13.2% had more than one death in the 

ICDDR,B area, compared to 26.2% in the comparison area (not shown in the table).  

 

Figure 1 presents the infant mortality rates by year of (child) birth for the treatment and 

comparison area. It clearly shows a decreasing trend in both areas until the late nineties. 

The infant mortality rate has always been higher in the comparison area than in the 

treatment area. At least in absolute terms, the differential has fallen over time, but both the 

levels and the difference seem to have stabilized since the late nineties.   

 

Table 2 shows the raw probabilities of infant death conditional on the survival status of the 

preceding sibling. Explaining this is one of the primary goals of this paper. The probability 

of infant death is higher by 4.42%-points (7.96% rather than 3.54%) if the preceding 

sibling died as an infant in the ICDDR,B area, and by 5.07%-points in the comparison area 

(10.17% rather than 5.10%). In other words, the likelihood of infant death is 2.25 times 

higher in the ICDDR,B area and 2.00 times higher in the comparison area if the preceding 

sibling died than if it survived.  

  

6. Estimation Results 

Several dynamic random effects probit models that incorporate the lagged dependent 

variable (survival status of the previous sibling) and unobserved heterogeneity are 

estimated. The first (Model 1) includes only the infant survival status of the previous 

sibling (yit-1); the second (Model 2) adds both child-level and mother-level factors, and the 

third also adds father-level factors (Model 3).  

 

The results are presented in Table 3a (equation for children of birth order larger than one) 

and Table 3b (equation for the first born child). The results of Model 1 with only the 

lagged dependent variable (with parameter γ) show that the death of the immediately 

preceding sibling had a positive and significant effect (p=0.001) on the conditional 

probability of infant death in the comparison area, whereas a positive but insignificant 

effect (p=0.401) is observed in the ICDDR,B area.  

 

The partial effect of yit-1 on P[yit=1| yit-1, xit, αi ] can be derived from the estimates by 

constructing counterfactual outcome probabilities p0, p1, taking yit-1 as fixed at 0 and 1, and 

evaluated at the overall means of the exogenous variables (xit=x..). The difference 
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between p0 and p1
 can be interpreted as average partial effect (APE); the ratio of the two is 

the predicted probability ratio (PPR) (Stewart 2007, p.522).  Both are indicators of state 

dependence or scarring. In Model 1, the APE is about 2.16% in the comparison area 

whereas it is less than 1% in the ICDDR,B area (see Table 3c). In terms of PPR, the state 

dependence effect implies that the likelihood of infant death is about 42% larger if the 

older sibling died at infancy in the comparison area and about 14% in the ICDDR,B area.  

 

In the comparison area, including child and mother-level variables reduces the parameter 

estimate of γ and its significance level (p=0.04) (Model 2); adding the father’s 

characteristics leads to a small increase of γ and its significance level (p=0.03). In the 

ICDDR,B area, adding the regressors in Models 2 and 3 leads to small negative and 

insignificant estimates of the effect of previous sibling’s death. In fact, though the sign 

changes, all three models in the ICDDR,B area find an insignificant effect of previous 

sibling’s death (Table 3a). The predicted probability ratios (PPR) in Table 3c show that 

according to model 3, the likelihood of infant death in the comparison area is 30% higher if 

the previous child died at infancy than if it was alive. This effect is smaller than the 

estimate of Model 1, due to including the covariates.  

 

The second panel (b) of Table 2 is based upon the estimation results of Model 3. 

Comparing the estimated average partial effect (APE) reported in the second panel of 

Table 2 with the difference in the probabilities in the first panel that only condition on 

previous child survival status shows that in the comparison area, almost one third (30% - 

row 11) of infant death clustering is a scarring effect. The remaining part is explained by 

observed and unobserved heterogeneity. In the ICDDR,B area, the estimated scarring 

effect is -14% but not significant).  

 

Comparing the predicted probability of infant death (excluding first-borns) with the 

predicted probability of infant death when the previous sibling was alive gives an estimate 

of the reduction in mortality that would be achievable if scarring were eliminated (γ=0). 

The estimates suggest that, in the absence of scarring, the infant mortality rate among 

children of birth order two and higher would fall by 6.24% in the comparison area (row 13, 

Table 2).  

 

We can test whether the initial period outcome (survival of the first child) within a family 

can be treated as exogenous. If θ=0 in equation (4), then unobservables in the equation for 
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the first observation are uncorrelated with unobservables in the (dynamic) equation for 

subsequent observations, and in this case there would be no need for the specification of 

separate equation for the first observations (Stewart, 2007; Arulampalam and Bhalotra, 

2006). The null hypothesis θ=0 is firmly rejected for all our models in the ICDDR,B area 

as well as the comparison area; see Table 3b). This confirms the importance of accounting 

for the initial condition.  

 

The proportion of the total unsystematic variance that is attributable to family-level 

unobservables αi is estimated to be 8% in the comparison area and 22% in the ICDDR,B 

area. The estimates decisively reject the null hypothesis of no family-level unobservables 

in both areas (Table 3b). Accordingly, in pooled probit models that ignore family-level 

unobserved heterogeneity, the effect of previous sibling’s death was overestimated: the 

estimate of γ for the comparison area was much higher there (0.2828) than in the complete 

model (0.1354; Model 3); in the ICDDR,B area, this difference was even larger (0.2996 

versus –0.0918).k This shows the importance of controlling for αi in the analysis.  

 

The other covariates often play different roles in the treatment and comparison area and for 

children of first and higher birth orders. Among first born children, sons are more likely to 

die than daughters in both areas, but the difference in the comparison area is smaller than 

in the ICDDR,B area and only marginally significant. No significant gender differences are 

observed for higher birth orders. In the ICDDR,B area, the probability of infant death is U-

shaped in the mother’s age at the time of child birth, with a minimum at about 30 years of 

age. In the comparison are, the pattern is similar for first born children but there is no 

evidence of increasing death probabilities at older ages for children of higher birth orders. 

The mother’s birth cohort dummies (where the reference category is the cohort of mothers 

born before 1966) consistently indicate significantly lower infant mortality probabilities for 

younger cohorts in both areas and for first born as well as higher birth orders, probably 

because of a time trend in hygienic circumstances and health technology.  

   

                                                   
k
 According to Stewart (2007) and Omariba et al. (2008), the results from the random 

effects probit model cannot be directly compared with the results from the pooled probit 
model because they use different normalizations. Rescaling by the suggested correction 
factor (σu/σv=√(1-ρρρρ)), however, does not change the qualitative conclusions. For example, 
the rescaled estimate of γ for Model 3 in the comparison area was 0.1295. 
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In both areas, mother’s schooling significantly reduces the risk of infant mortality for the 

first child, but is insignificant for higher birth orders once the father’s schooling is also 

controlled for (Model 3). On the other hand, schooling of the father significantly reduces 

infant mortality of higher birth orders but not of first born children. It seems hard to 

interpret these differences; both schooling variables are measures of the family’s socio-

economic status, and the general conclusion is that higher socio-economic status implies 

lower mortality risks. The third indicator of (low) socio-economic status is a dummy 

indicating whether the father is a day labourer. It has the expected significantly positive 

effect for higher birth orders, but is insignificant for mortality of first born children.   

 

Those who used tube well or pipe water as a source of drinking water are less likely to see 

their children die in infancy die but this finding is significant for higher birth orders in the 

ICDDR,B area only. The distance to the nearest health facility has a significantly positive 

effect on infant mortality in the comparison area, and the effect is particularly pronounced 

for the first born child. That no significant effect is found in the ICDDR,B area may be due 

to the fact that almost all families live rather close to a health facility in that area. 

 

7.  Decomposing the Difference between Areas  

The aggregate prediction of the infant mortality rate according to model 3 for all children 

(first born as well as others) is about 49 per thousand live births in the ICDDR,B area and 

67  per thousand live births in the comparison area, a difference of 18 per thousand live 

births. We analyze the gap between the two areas using the common technique of 

decomposing differences in mean levels into those due to different observable 

characteristics or “endowments” and those due to different effects of characteristics or 

“coefficients” (Blinder, 1973; Oaxaca, 1973). In the standard case of a linear model the 

technique requires coefficient estimates from linear regressions for the outcome of interest 

and sample means of the independent variables used in the regressions. Adjustments for 

the case of a nonlinear model such as our binary choice model were introduced by Fairlie 

(2005) and Yun (2004). 

 

Here we follow the decomposition methodology proposed by Yun (2004) for the probit 

model (binary dependent variable), which can straightforwardly be extended to the 

dynamics random effects probit model taking into account of the initials conditions and the 

unobserved heterogeneity. The ‘aggregate’ or ‘overall’ mean difference in infant mortality 
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between the two areas ICDDR,B (group A) and comparison (group B) can be decomposed 

as follows: 

 

( ) ( )

( ) ( )

A B A A A A B A A B

B A A B B B B B

Y Y X X

X X

β λ α β λ α

β λ α β λ α

 − = Φ + −Φ + + 

 + Φ + −Φ + 

                            (8) 

                                 

The means are taken over either all first born children or all higher birth orders of all 

mothers in each area and over the random effects. We have used shorthand notation, 

dropping indexes i and t and combining expressions for the first born child and the second 

and higher birth orders. For example, AX  includes itx  as well as 1ity −  for t>1, Aβ  denotes 

either π  (for birth order 1) or ( , )β γ  (for higher birth orders), and λ θ=  or 1λ = for birth 

order equal to 1 or larger than 1, respectively.      

 

The first component in the decomposition in equation (8) is the “endowment” or 

“composition effect”, the part of the difference explained by differences in (observed and 

unobserved) characteristics of in the two samples. The second is the residual difference 

keeping characteristics constant. To estimate the two components, we replace the 

parameters by the estimates for Model 3 in Table 3 for the treatment area (A) or the 

comparison area (B). This is referred to as decomposition 1. We also present the results in 

the reverse order, i.e., taking the comparison area as group A and the treatment area as 

group B (and adding minus signs for comparability), which we refer to as decomposition 2. 

The unobserved heterogeneity terms are replaced by random draws from their estimated 

normal distributions. 

 

To understand which characteristics contribute to explaining the mortality difference 

between the two regions, we also performed the so-called detailed decomposition, again 

following Yun (2004). For this purpose, equation (8) is rewritten as follows: 
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                                   (9) 

where the “weights” are given by 
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We focus on the contribution of each variable to the endowment effect, the first part in (9). 

We present the results for the second part for completeness, but we do not have a good 

interpretation for these in our context.  

 

The bottom rows of the two panels in Table 4 give the results of the overall decomposition 

(“Total”). For the first born child, almost two thirds of the mortality gap is explained by 

characteristics according to both decomposition 1 and decomposition 2 (16.3 or 17.0 per 

one thousand live births, of a total gap of 24.9 per thousand live births). The detailed 

composition shows that this is almost completely due to the variable distance to the nearest 

health facility. This variable has a strong (negative) effect on survival chances and the 

distances are much larger in the comparison area than in the treatment area.    

 

For higher birth orders, differences in characteristics explain a smaller part of the total gap 

and the results are sensitive to which of the two decompositions is used. According to 

decomposition 2, the endowment effect is about one third of the total effect (5 out of the 

total gap of 15 per thousand live births) and again this is mainly driven by the distance to 

the nearest health facility, though mother’s age at birth also plays a role: mortality falls 

with age of the mother at birth, and mothers in the treatment area are somewhat older, on 

average. According to decomposition 1, however, the difference in distance to a health 

facility hardly plays a role. The reason is that this is now weighted by the coefficient 

estimate for the distance variable in the treatment area, which is small and insignificant. 

Accordingly, decomposition 1 also attributes a much smaller contribution to all observed 

differences in characteristics (1.5 out of 15).      

 

8. Discussion 

We have analyzed the determinants of infant mortality in Bangladesh, in an area with and 

an area without health services beyond the standard services provided by the government. 

We have used recently developed methods accounting for heterogeneity across families as 

well as the within family dynamics of infant mortality – accounting for the two potential 

explanations for the stylized fact that a child has a larger mortality probability if the 
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previous child of the same mother died. Separating the causal effect from unobserved 

heterogeneity has important implications for policy in this area and for research on the 

inter-relations of family behaviour and mortality. Indeed, the causal effect of infant death 

of the previous child appears to be overestimated in a model without unobserved 

heterogeneity compared to the full dynamic model, showing the importance of controlling 

for mother specific unobserved heterogeneity.  

 

We find a substantial and significant scarring effect in the comparison area. The likelihood 

of infant death is about 30% more if the older sibling died in infancy and the estimates 

suggest that, in the absence of scarring, the infant mortality rate among the second and 

higher order births would fall by 6.2%. Thus, policies targeted at reducing childhood 

mortality are important to also avoid the death of subsequent siblings. There is no evidence 

of scarring in the treatment area; a possible explanation of this is a (negative) learning 

effect that plays a role with available extensive health interventions and is large enough to 

annihilate the (positive) scarring effect. Mothers of the ICDDR,B area are routinely visited 

by the community health workers helping them to be resourceful with knowledge and 

health information. Another explanation might be that the mechanism through fertility and 

birth intervals (the death of a child leads to a shorter birth interval and short birth intervals 

lead to more vulnerable children) plays less of a role, because the better health services and 

information provisions limit the shortening of birth intervals after child death (the 

replacement effect). Further research identifying the latter mechanism (as in Bhalotra and 

van Soest, 2008) can disentangle these explanations. In any case, our result in this respect 

is in line with the finding by Sastry (1997) that clustering of mortality risks is greater in 

settings with high fertility and high mortality. Arulampalam and Bhalotra (2008) also 

found a weak scarring effect in more developed Indian states in India like Punjab (the 

richest state), and Kerala (socially the most advanced). 

 

The aggregate level mother-specific variation in infant deaths is 18 percent of the total 

unsystematic variation in the ICDDR,B area, compared to only 8 percent in the comparison 

area. This difference can be explained as follows: The ICDDR,B area is divided into four 

sub-regions, so-called Blocks. ICDDR,B interventions are phased out at different times in 

different Blocks. For example, measles vaccination to all children started in 1982 in two 

Blocks and in 1985 in the other two Blocks. Thus, children of different birth cohorts under 

study benefited differently from these interventions. Another explanation is that some 
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mothers who receive health information are better at exploiting this than others so that the 

additional health information increases the heterogeneity in health outcomes.  

 

Estimating the model for the higher educated mothers only (results not reported) suggests 

that the mother specific variation in infant deaths is 18 percent higher among mothers with 

secondary school or higher education than for the complete ICDDR,B sample. This finding 

confirms the statement that “the new interventions will tend to increase the inequality since 

they will initially reach those who are already better off” (Victora et al., 2000; Razzaque et 

al., 2007). On the other hand, in the situation without interventions in the comparison area, 

the unobserved heterogeneity is higher among the mothers with low education level, which 

may be due to variation in innate ability in this group (Das Gupta, 1990).  

 

Comparison of other covariate effects between areas offers some interesting new insights. 

For children of birth order two and higher, the likelihood of infant death falls with the 

schooling years of father. In the comparison area, the mother’s education plays no 

significant role keeping the father’s education constant for the second and further children, 

but it does play a significant role in reducing the infant’s death for the first-born child. The 

fact that occupation of the father matters - a day labourer is more likely to experience 

infant deaths - is similar to the finding of D’Souza and Bhuiya (1982). It might reflect the 

association between high mortality and poor socioeconomic conditions with insecure 

household income. We find that first children are more likely to die if they are boys than if 

they are girls in the ICDDR,B area, while a much smaller and in significant difference by 

gender is observed in the comparison area. The stylized fact seems to be that biologically a 

male child has a higher mortality probability during childhood than a female child 

(Majumder et al., 1997; Baragi et al., 1999), so that the insignificant difference in the 

comparison area may reflect some behavioural effect related to son preference.   

 

A larger distance to the nearest health facility leads to higher mortality in the comparison 

area and this effect is more pronounced for the first born child than for children of higher 

birth order, possibly reflecting the social taboos of restricting the mobility of younger 

mothers. In line with this, decomposing the infant mortality gap between the two areas 

shows that distance to the nearest health facility  plays an important role in explaining the 

between areas mortality gap for first born children in particular. This single factor 

‘distance to the nearest health facility’ explains 15 per 1,000 live births of the total 

difference of 25 per 1,000 live births among first-borns in the two areas. For higher birth 
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orders, the importance of the distance to the health clinic in explaining the infant mortality 

gap depends on which decomposition is used. In any case, it seems that the variable plays a 

larger role for first born children than for higher birth orders. Accordingly, the total set of 

observed characteristics explains a larger part of the gap for first-born children than for 

later births. This may be related to the fact that new mothers do not tend to visit health 

clinics outside the village due to social taboos.  

 

 

 

 

 

 

 

 

 

 

     

Fig. 1. Infant mortality rates by birth year  
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Table 1. Descriptive Statistics 

 
Variables  Area 

  ICDDR,B Comparison 

% of infant deaths (all live-births) 5.00 6.74 
% of infant deaths excluding first-borns 3.85 5.55 
% of infant deaths among first borns 6.63 8.78 
% families with no infant deaths 89.50 84.53 
% families in which all births die in infancy 0.0091 0.0130 
Age of mother at first birth* 21.16 (3.23) 21.08 (3.21) 
Age of mother at birth* 24.70 (5.03) 24.58 (4.89) 
Mother’s years of schooling* 3.52 (3.75) 3.20 (3.56) 
% mothers no schooling 42.47 50.50 
% mothers 1-5 years of schooling 24.86 25.51 
% mothers 6 or more years of schooling 26.66 24.0 
% mothers Muslim 82.71 89.85 
Number of children ever born per mother* 2.42 (1.30) 2.73 (1.53) 
Number of children ever born per mother (%):   
                                                       1 30.10 27.01 
                                                       2 27.34 23.14 
                                                       3 23.18 20.62 
                                                       4+ 19.38 29.23 
% first-born children 41.35 36.63 
Father’s years of schooling (father) * 2.93 (3.98) 2.68 (3.68) 
% father no schooling 54.89 55.52 
% father attended 1-5 years schooling 22.65 24.15 
% father attended 6+ years schooling 21.68 19.57 
% father day labourer 19.61 20.96 
% families with drinking water source tubewell 
/ piped water 

 
87.12 

 
76.91 

Distance from nearest hospital (km) * 1.87 (0.98) 7.07(4.04) 
Number of mothers in sample + 13,232 11,856 
Number of children in sample ++  31,968 32,366 
 
*: Means and standard deviations (in parentheses) 
+ Sample mothers are who continue living in Matlab (never migrated out) since 1982 June 
to 2005    December after given first birth 
++ All births in Matlab HDSS area from July 1982 to December 2005 for which survival 
status after twelve months is observed.  
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Table 2. Clustering and scarring in sibling infants deaths
l
 

 

Estimates Area 

 ICDDR,B Comparison 

 (a)  Raw data   
1    Incidence of infant death/1000 live births 50.0 67.4 
2    Incidence of infant death/1000 live births 

excluding first-
borns 

38.5 55.5 

3    Probability (yi j = 1|y ij -1=1), p1 0.0796 0.1017 
4    Probability (yi j = 1|y ij -1=0), p0 0.0354 0.0510 
5    Persistence due to y ij -1 (difference measure) 

(row 3- row 4), APR 
0.0442 0.0507 

6    Persistence due to y ij -1 ( ratio measure) 
      (row 3/row 4), PPR 

2.2486 1.9941 

(b)  Model estimates (Model 3)   
7    Probability (yi j = 1|/y ij -1=1), p1 0.0315 0.0680 
8    Probability (yi j = 1|y ij -1=0), p0 0.0377 0.0526 

12    Per  9    Persistence due to y ij -1 (difference measure) 
(row 7- row8),  APE 

-0.0062 0.0154 

10  Persistence due to y ij -1 (ratio measure) (row 
7/row 8),  PPR 

0.8359 1.2933 

11   % raw persistence explained (row 9/row 5)  -14.0271 30.3748 
12  Predicted probability of infant death 

excluding first-borns 
0.0386 0.0561 

13  % reduction in mortality if γ = 0  (with 
respect of row 12) 1-(row8*/row 12)*100 

- 6.2389 

14  Variance of family level heterogeneity 
(standard error) 

0.2221 (0.0417) 0.0855 (0.0280) 

15  % variance explained by family level 
heterogeneity 

18.1736 7.8766 

Number of mothers in sample 13,232 11,856 
Number of children in sample 31,968 32,366 
Notes: 
In rows 3 and 4 (part (a)), p1 is the observed probability of infant death conditional on 

previous sibling died at infancy; p0 is  the observed probability of infants death 
conditional on previous sibling survived at infancy. 

In rows 7 and 8 (panel (b)), p1 is computed using the estimated marginal predicted 
probably of  yit for each observation under the condition previous sibling died at 
infancy (yit-1 = 1) and then averaging over all observations excluding the first borns.  
Similarly, p0 is obtained as setting  yit-1 = 0. 

                                                   
l This table is built up in a similar way as Table 2 in Arulampalam and Bhalotra (2006) 
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Table 3a. Estimation Results of Dynamic Random Effects Probit Models for Death at 

Infancy, Birth Order > 1 

ICDDR,B area Comparison area  

Covariates Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

 Previous sibling died (γ) 0.0646 
(0.0770) 

-0.0869 
(0.0856) 

-0.0918 
(0.0858) 

0.1875 
(0.0577) 

0.1270 
(0.0621) 

0.1354 
(0.0621) 

Male   0.0488 
(0.0384) 

0.0453 
(0.0384) 

 0.0142 
(0.0304) 

0.0137 
(0.0303) 

Birth order  0.1126 
(0.1018) 

0.1185 
(0.1017) 

 -0.1269 
(0.0542) 

-0.1208 
(0.0541) 

Birth order square  -0.0186 
(0.0138) 

-0.0185 
(0.0137) 

 0.0165 
(0.0064) 

0.0162 
(0.0064) 

Mother’s age at birth  -0.2103 
(0.0406) 

-0.1980 
(0.0408) 

 -0.0689 
(0.0336) 

-0.0638 
(0.0337) 

Mother’s age at birth 

square 

 0.0034 
(0.0007) 

0.0033 
(0.0007) 

 0.0008 
(0.0006) 

0.0007 
(0.0006) 

Muslim   -0.0720 
(0.0529) 

-0.0331 
(0.0552) 

 -0.0908 
(0.0493) 

-0.0702 
(0.0510) 

Schooling years mother  

   1-5 years 

 -0.0953 
(0.0504) 

-0.0593 
(0.0520) 

 -0.0298 
(0.0390) 

0.0089 
(0.0403) 

Schooling years mother  

6+ years  

 -0.1598 
(0.0614) 

-0.0415 
(0.0672) 

 -0.1615 
(0.0517) 

-0.0811 
(0.0554) 

Mother’s birth cohort:       
       1966-1970  -0.0219 

(0.0529) 
-0.0008  
(0.0533) 

 -0.1676 
(0.0402) 

-0.1583 
(0.0408) 

       1971-1975  -0.1604 
(0.0623) 

-0.1362 
(0.0634) 

 -0.3062 
(0.0473) 

-0.3065 
(0.0491) 

       1976+  -0.1885 
(0.0719) 

-0.1559 
(0.0736) 

 -0.5575 
(0.0600) 

-0.5512  
(0.0625) 

Schooling years father  

1-5 years 

  0.0642 
(0.0494) 

  -0.0496 
(0.0390) 

Schooling years father  

6+ years 

  -0.1861 
(0.0651) 

  -0.1455 
(0.0494) 

Father’s occupation is 

day labourer 

  0.1331 
(0.0520) 

  0.0843 
(0.0394) 

Source of drinking water: 

tubewell / piped water 

  -0.1775 
(0.0604) 

  -0.0164 
(0.0399) 

Distance to health facility 

(km) 

  -0.0003 
(0.0212) 

  0.0086 
(0.0039) 

Constant -1.9807 
(0.0467) 

1.0723 
(0.5389) 

0.8990  
(0.5471) 

-1.7209 
(0.0278) 

0.0540 
(0.4494) 

-0.1197 
(0.4561) 

Notes: 
Standard errors are in parentheses 
Reference categories of categorical variables used in the model: female, non-Muslim, no 

schooling years, no access to piped water, not day labourer, mother born before 1966.  
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Table 3b. Estimation Results of Dynamic Random Effects Probit Models for Death at 

Infancy, First Born Children 

ICDDR,B area Comparison area  

Covariates Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Male  0.1217 
(0.0372) 

0.1218  
(0.0372) 

 0.0659 
(0.0342) 

0.0629 
(0.0342) 

Mother’s age at birth  -0.1045 
(0.0383) 

-0.1026 
(0.0382) 

 -0.1553 
(0.0358) 

-0.1538 
(0.0356) 

Mother’s age at birth 

square 

 0.0017 
(0.0008) 

0.0017 
(0.0008) 

 0.0028 
(0.0008) 

0.0029 
(0.0007) 

Muslim  -0.0165 
(0.0478) 

-0.0018 
(0.0497) 

 -0.0387 
(0.0556) 

-0.0042 
(0.0571) 

Schooling years mother  

   1-5 years 

 -0.2018 
(0.0480) 

-0.1933 
(0.0497) 

 -0.1562 
(0.0442) 

-0.1339 
(0.0456) 

Schooling years mother  

6+ years  

 -0.3423 
(0.0511) 

-0.2965 
(0.0563) 

 -0.3367 
(0.0484) 

-0.3063 
(0.0527) 

Mother’s birth cohort:       
       1966-1970  -0.1451 

(0.0572) 
-0.1409 
(0.0575) 

 0.0094 
(0.0566) 

0.0228 
(0.0571) 

       1971-1975  -0.1854 
(0.0595) 

-0.1783  
(0.0610) 

 0.0048 
(0.0588) 

0.0391 
(0.0615) 

       1976+  -0.4200 
(0.0610) 

-0.4123 
(0.0632) 

 -0.1783 
(0.0591) 

-0.1245 
(0.0640) 

Schooling years father  

1-5 years 

  0.0657 
(0.0462) 

  -0.0339 
(0.0428) 

Schooling years father  

6+ years 

  -0.0744 
(0.0535) 

  -0.0049 
(0.0487) 

Father’s occupation is 

Day labourer 

  0.0285 
(0.0450) 

  0.0829 
(0.0420) 

Source of drinking water: 

tubewell / piped water 

  -0.0353 
(0.0520) 

  -0.0582 
(0.0425) 

Distance to health facility 

(km) 

  0.0183 
(0.0182) 

  0.0154 
(0.0042) 

Constant -1.6433 
(0.0550) 

0.1321 
(0.4548) 

0.0544 
(0.4605) 

-1.4011 
(0.0321) 

0.7885 
(0.4242) 

0.5859 
(0.4276) 

ρρρρ 0.1684 
(0.0369) 

0.2283 
(0.0415) 

0.2221 
(0.0417) 

0.0977 
(0.0241) 

0.0940 
(0.0280) 

0.0855 
(0.0280) 

θ (see eq. 4) 0.9779 
(0.2576) 

0.7436 
(0.1693) 

0.7476 
(0.1747) 

0.8054 
(0.2748) 

0.7875 
(0.3024) 

0.7803 
(0.3296) 

Log-likelihood -6238  -6094 -6076 -7879 -7704 -7685 
 
Note: 

ρρρρ is defined as 
22

2

uσσ

σ

α

α

+
; it is the proportion of the total unsystematic variance that can be 

attributed to family-level unobservables αi . 
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Table 3c. Average Predicted Probabilities Given Previous Sibling’s Survival Status; 

Models 1, 2 and 3 

ICDDR,B area Comparison area  

Probabilities Model 1 Model 2 Model3 Model 1 Model 2 Model 3 

p1
* 0.0403 0.0372 0.0315 0.0726 0.0676 0.0680 

p0
* 0.0354 0.0417 0.0377 0.0511 0.0532 0.0526 

APE: p1- p0 0.0049 -0.0045 -0.0062 0.0216 0.0144 0.0154 

PPR: p1/p0 1.136 0.8921 0.8359 1.422 1.2711 1.2933 

 
Note: Probabilities are computed in the same way as p1, p0 in panel b of Table 2  
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Table 4: Decomposition of Differences in Infant Mortality Rates between ICDDR,B and 

Comparison Area 

 
Decomposition 1 

Child=1 Child>=2 

 

 

 

Variables used in the model 

Diff. in 

Characteristics 

Diff. in 

Coefficients 

Diff. in 

Characteristics 

Diff. in 

Coefficients 

Distance to health facility -14.825 -0.443 0.098 -0.63366 
Mother’s schooling years -0.360 0.264 -0.046 -0.10362 
Mother’s age at birth -0.309 -12.048 -0.679 -17.195 
Mother’s birth cohort 0.417 4.601 0.066 1.673 
Father’s schooling years -0.486 -0.190 -0.226 0.201 
Father’s occupation -0.058 0.301 -0.161 0.091 
Birth order - - 0.312 3.583 
Male -0.042 -0.666 -0.004 0.161 
Muslim 0.023 -0.046 0.128 0.333 
Previous child died - - 0.107 -0.204 
Source of drinking water -0.645 

 
-0.376 

 
-1.186 

 
-1.264 

 
Total  -16.284 -8.603 -1.591 -13.359 

 
Decomposition 2 

Child=1 Child>=2 

 

 

 

Variables used in the model 

Diff. in 

Characteristics 

Diff. in 

Coefficients 

Diff. in 

Characteristics 

Diff. in 

Coefficients 

Distance to health hospital -14.877 -0.111 -3.924 -0.127 
Mother’s schooling years -0.656 0.224 -0.122 -0.074 
Mother’s age at birth -0.348 -1.137 -1.184 -13.074 
Mother’s birth cohort -0.026 4.307 0.511 1.237 
Father’s schooling years 0.108 -0.103 -0.143 0.138 
Father’s occupation -0.199 0.269 -0.141 0.062 
Birth order - - -0.023 0.277 
Male -0.026 -0.626 -0.002 0.122 
Muslim 0.061 -0.040 0.376 0.237 
Previous child died  - - -0.219 -0.123 
Source of drinking water -1.267 -0.410 

 
-0.152 

 
-1.0934 

 
Total  -17.030 -7.860 -5.023 -9.928 

A=ICDDR,B area; B=Comparison area 
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Annex 

Table A1. Estimation Results of Pooled Dynamic Probit Models for Death at Infancy, Birth 

Order >1 

 
ICDDR,B area Comparison area  

Covariates Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

 Previous sibling died (γ)   0.2996 
(0.0558) 

  0.2828 
(0.0445) 

Male    0.0372 
(0.0342) 

  0.0138 
(0.0291) 

Birth order   0.1311 
(0.0912) 

  -0.1180 
(0.0512) 

Birth order square   -0.0123 
(0.0122) 

  0.0185 
(0.0060) 

Mother’s age at birth   -0.1590 
(0.0353) 

  -0.0539 
(0.0319) 

Mother’s age at birth 

square 

  0.0026 
(0.0006) 

  0.0006 
(0.0006) 

Muslim    -0.0317 
(0.0470) 

  -0.0650 
(0.0474) 

Schooling years mother  

   1-5 years 

  -0.0447 
(0.0440) 

  0.0148 
(0.0375) 

Schooling years mother  

6+ years  

  -0.0026 
(0.0570) 

  -0.0624 
(0.0519) 

Mother’s birth cohort:       
      1966-1970   -0.0012 

(0.0445) 
  -0.1525 

(0.03762) 
      1971-1975   -0.1071 

(0.05357) 
  -0.2881 

(0.0455) 
      1976+   -0.1156 

(0.0628) 
  -0.5169 

(0.0580) 
Schooling years father  

1-5 years 

  0.0617 
(0.0418) 

  -0.0524 
(0.0364) 

Schooling years father  

6+ years 

  -0.1548 
(0.5531) 

  -0.1408 
(0.0463) 

Father’s occupation is 

day labourer 

  0.1239 
(0.0451) 

  0.0860 
(0.0372) 

Source of drinking water: 

tubewell / piped water 

  -0.1527 
(0.0522) 

  -0.0190 
(0.0376) 

Distance to health facility 

(km) 

  -0.0002 
(0.0180) 

  0.0081 
(0.0037) 

Constant   0.4903 
(0.4815) 

  -0.2260 
(0.4336) 

Log likelihood   -2986   -4266 
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