Migration-Fertility Trade-Off in Low Fertility Populations

Edward Jow Ching TU

Division of Social Science Hong Kong University of Science and Technology Kowloon, Hong Kong soejctu@ust.hk

Xin YUAN

Institute of Population and Development Nankai University Tianjin, China yuanxin@nankai.edu.cn

Long Abstract

Research questions: To what extent increasing migration could alter the trends of the aging and forecasted decline of the populations?

Assumption: (the positive or negative) net-migration is proportional to births; Stable Population with Net-Migration Proportional to Births

Births and Migration:

Density of births at time t: $b(t) = be \rho t$, where ρ : the (positive or negative) growth rate $b > 0$: the density at $t = 0$. $p(x)$: the probability of surviving to age $0 \le x \le \omega$; ω is the highest possible age. Suppose: $T > 0$: the total fertility rate, α > 0: the lowest age of childbearing, β is the highest age of childbearing with α < β < ω. The age-specific fertility in age $\alpha \le x \le \beta$ is of the form Tf(x), where $f(x) \ge 0$ integrates to 1 over childbearing ages. Assuming the same survival and fertility values apply to all members of the population of interest, as long as they stay in it.

 $R(x,t)$: the cumulative in-migration to the population of interest, by members of the cohort born at t, by age $0 \le x \le \omega$. $S(x,t)$: the cumulative out-migration from the population of interest, by those born at t, by age $0 \le x \le \omega$. Their densities are $(d/dx)R(x,t) = r(x,t)$ and $(d/dx)S(x,t) = s(x,t)$.

 $R(\omega,t) = R(t)$ and $S(\omega,t) = S(t)$, for short.

The age-patterns of the migration streams do not change over time, so $r(x,t)$ $= r(x)R(t)$ and $s(x,t) = s(x)S(t)$, where $r(x) \ge 0$, $s(x) \ge 0$, and (1)

$$
\int_{0}^{\omega} \mathbf{r}(\mathbf{x}) d\mathbf{x} = 1, \quad \int_{0}^{\omega} \mathbf{s}(\mathbf{x}) d\mathbf{x} = 1.
$$

 $N(x,t)$: net-migration to the cohort born at time t, so $n(x,t) = r(x)R(t)$. s(x)S(t) is its (positive or negative) density in age $0 < x \leq \omega$ 2 Define $N(t) = R(t) - S(t)$.

Migration Proportional to Births:

The *proportionality assumption* that leads to stability is: $R(t) = cRb(t)$ and $S(t) = cSb(t)$ for some cR, $cS \ge 0$. $n(x,t) = h(x)b(t)$, where $h(x) = cRr(x) - cSs(x)$. We define a function (2)

$$
H(x) = \int_{0}^{x} h(y) \frac{p(x)}{p(y)} dy.
$$

Allowing net migration, so $b(t)H(x)$: the contribution of net-migration to the density of population in age x.

Assuming that survival is independent of the propensity to leave.

Using (2), the density of the population in age x at t as

$$
b(t-x)(p(x) + H(x)).
$$

Population Renewal:

Earlier births generate the births at t via the basic renewal equation (3)

$$
b(t) = T \int_{\alpha}^{\beta} b(t-x) (p(x) + H(x)) f(x) dx.
$$

Assuming data on net-migration only. Assuming $cR - cS = c \neq 0$.

First, $n(x) = h(x)/c$, so $n(x)$ integrates to 1. Second, $G(x) = H(x)/c$.

This is the same as a normalized version of (2) , when $h(y)$ is replaced by $n(v)$. Thus, both $n(x)$ and $G(x)$ are independent of the level $N(t)$ of netmigration. Only the age-pattern matters.

 $G(x)$: a *migration survivor function* -- positive or negative "fraction" of the cumulative net-migration surviving to age $0 \le x \le \omega$. Now $H(x) = cG(x)$ in (3).

The survival probability $p(x)$ and the migration survivor function $G(x)$ are generally fixed so $v(x,c) = p(x) + cG(x)$, for short. Substituting the exponential form of the births into (3) we get the equation (4)

$$
1 = T \int_{\alpha}^{\beta} e^{-\rho x} v(x, c) f(x) dx.
$$

This connects the three parameters D, c, and T.

In analogy with the closed population, the stable population experiencing proportional net-migration has an age-distribution proportional to e -ρx $V(X,C)$.

Effect of Migration on Growth Rate:

In a multi-state system the proportionality factor c is determined as a part of the stable population calculation. We use the empirically observed ratio of current net-migration and current births.

Trade-Off between Fertility and Migration:

For any value of D, consider (4) as defining a relation between T and c. Since we can solve for $T > 0$ in terms of c, and for c in terms of T, the relation is one-to-one. Taking $D = 0$, a special case of a stationary population.

Aging via Dependency Ratios:

Dependency Ratios

In a closed stable population, age-distribution is proportional to e - $\rho x p(x)$ for $0 \le x \le \omega$, so a growing population with $\rho > 0$ is older than a declining population with $\rho < 0$.

However, if we fix ρ in an open population, there is a trade-off between c and T. Thus, there can potentially be a second aging effect that derives from the relative values of c and T.

Age-dependency ratios are most often motivated by economic considerations. However, as we concentrate on reproduction, we will first define (5)

$$
I_1(c,\rho) = \int_{0}^{\alpha} e^{-\rho x} v(x,c) dx, \quad I_2(c,\rho) = \int_{\alpha}^{\beta} e^{-\rho x} v(x,c) dx, \quad I_3(c,\rho) = \int_{\beta}^{\omega} e^{-\rho x} v(x,c) dx.
$$

The lower dependency ratio $L(c,\rho) = I1(c,\rho)/I2(c,\rho)$, the upper dependency ratio $U(c,\rho) = \frac{13(c,\rho)}{12(c,\rho)}$, and the overall dependency ratio $D(c,\rho) =$ $L(c,\rho) + U(c,\rho)$.

Using these measures, net-migration induces "aging", if $L(c,\rho)$ decreases or U(c, ρ) increases with c.